
Delphi Informant June 1996 1

ON THE COVER
9 Do the Strand — Joseph C. Fung
The 32-bit version of Windows features true multitasking through
multithreading, a technology that can enhance the performance of
your Windows 95 and Windows NT applications. Mr Fung explains
how to implement multithreading capabilities into your Delphi 2
programs using clear, workable examples.

FEATURES
15 Informant Spotlight — Kevin Bluck
Most programmers use Paradox tables for their Delphi database
applications. Depending on the application, however, Local InterBase
may be the better tool. To help you decide which product best suits
your needs, Mr Bluck provides a comprehensive analysis and
comparison of Paradox and InterBase.

20 DBNavigator — Cary Jensen, Ph.D.
In addition to ranges, DataSets, and SQL queries, Delphi 2 provides
filtering capabilities. Dr Jensen introduces the cast of characters —
TDBDataSet’s TTable, TQuery, and TStoredProc —you’ll need to
become familiar with to help your users “drill down” into their data
with Delphi 2.

23 From the Palette — Ray Konopka
If you’re interested in creating Delphi components, Mr Konopka’s article
is a great place to start. His TRzAddress component appears simple. Peel
back its layers, however, and you’ll see that this well-built control
demonstrates the effective encapsulation of other components.

28 OP Tech — Keith Wood
There’s good recursion and there’s bad recursion. Mr Wood examines the
positive side of this phenomenon in Object Pascal by exploring a number
of interesting implementations, including: calculating factorials, building
binary trees, and creating mind-bending fractals.

35 Dynamic Delphi — Andrew Wozniewicz
It’s the final installment of a four-part series on DLLs. Mr Wozniewicz
concludes by discussing: dynamically loading and releasing a DLL, using
dynamically loaded DLLs, and accessing data in a library. He even pro-
vides a DLL summary for your quick reference.

REVIEWS
40 Memory Monitor for Delphi

Product review by Robert Vivrette
Resource leaks are the bane of Windows programming.
Fortunately, there’s now a tool to help Delphi developers
stop the bleeding. It’s named MemMonD and our own
Mr Vivrette puts it through its paces.

43 Developing Custom Delphi Components
Book review by Richard Wagner

DEPARTMENTS
2 Editorial by Jerry Coffey
3 Delphi Tools
6 Newsline
44 File | New by Richard Wagner

Cover Art By: Tom McKeith

June 1996, Volume 2, Number 6

Do the Strand
Delphi 2 Multithreading

Why does The Unabomber love Visual Basic?
Because he hates technology.
— Anonymous

Symposium
I love that one. It has all the elements of a great belly laugh. It’s short, topical, and has that cruel
edge a joke needs to really draw blood. Cruel because it rings true — as any VB-to-Delphi convert

can attest.
Zack Urlocker, Director of Delphi
Product Management, and Delphi cre-
ator, Anders Hejlsberg arriving at the
Delphi Informant Readers Choice
Awards. They’d just left the Jolt Cola
awards where Delphi won for
Technical Excellence.
The tone was only slightly more seri-
ous at the First Annual Delphi
Informant Readers Choice awards din-
ner, where representatives of the best
third-party Delphi tools were present-
ed with lovely tokens of your affec-
tion. However, there is no affectionate
term for the award itself — a hand-
some Lucite tower encapsulating the
DI “Big D” and its happy electron
satellites (a dire warning of a radia-
tion leak or the first image in an “Our
Friend the Atom” slideshow, depend-
ing on your mood). No candidate
jumps to the forefront. For example, a
“Dimmy” (from Delphi Informant
Magazine) doesn’t sound like some-
thing you’d really like to win.
Obviously there’s work to be done in
this area. Or perhaps I should heed
today’s chic admonition and simply
“not go there.”
Woll2Woll Software’s Roy Woll graciously
accepts the Delphi Informant Readers
Choice Product of the Year award.
The important thing is that there is a
happy, healthy, and still burgeoning
third-party market for Delphi. This is
especially remarkable given the fact
that Delphi is just over a year old.
Product of the Year was a runaway
with Woll2Woll Software’s InfoPower
taking top honors. Other winners
included Pacheco and Teixeira’s Delphi
Developer’s Guide for Best Delphi
Book, and Successware International’s
Apollo Rock-E-T for Best Delphi
Add-In (see the April DI for all the
winners).

And despite the fact the DI Readers
Choice Awards weren’t for them, the
three top members of the Delphi devel-
opment team — Delphi Chief
Architect, Anders Hejlsberg; Director
of Delphi Product Management, Zack
Urlocker; and Director of Delphi
Development, Gary Whizin — were
kind enough to attend the festivities.

Actually, our little affair must have
been a bit of a let down for the three-
some, since earlier that evening they’d
accepted the Jolt Cola award for
Technical Excellence, beating an
impressive array of competitors
including white-hot Java, Symantec
C++, and Visual Basic (okay, so most
of the competitors were impressive).

But if it was anticlimactic for the
Borland crew, they never let on.
Come to think of it, it was probably
just the thing after receiving the Jolt
Cola award. The Delphi team took
home an industry award for them-
selves, and then looked on as the
community they created was honored
for its achievements. ’Course the faji-
tas and margaritas didn’t hurt.

Thanks for reading,

Jerry Coffey, Editor-in-Chief

Internet: jcoffey@informant.com
CompuServe: 70304,3633
Fax: 916-686-8497
Snail: 10519 E. Stockton Blvd., Ste.
142, Elk Grove, CA 95624
Delphi Informant June 1996 2

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Teach Yourself Delphi 2
in 21 days

Dan Osier, Steve Grobman,
and Steve Batson
SAMS Publishing

ISBN: 0-672-30863-0
Price: US$35 (706 pages)
Phone: (800) 428-5331
TurboPower Announces Async Professional 2.0 for Delphi

TurboPower Software

Co., of Colorado Springs,
CO, has announced Async
Professional 2.0 for Delphi
(APD), a serial communi-
cations library of native
VCL components for
Delphi.

Version 2.0 offers 32-bit
support and fax compo-
nents for converting files,
sending and receiving fax
files with fax modems,
viewing and printing fax
files, and converting print
output to fax format. APD
supports both 16- and 32-
bit applications.

APD now includes TAPI
devices, eliminating many
modem configuration prob-
lems.

APD also features protocol
status, modem selection,
and dialing dialog boxes. It
includes ANSI and VT100
emulators, ZModem,
YModem, and XModem
protocols, debugging and
tracing tools, modem data-
base, and an event-driven
dialing engine. File transfers
and other operations run in
the background.

A free trial version of ADP
is available on TurboPower’s
Web site and BBS.

The demonstration ver-
sion has the full functional-
ity of APD, but only runs
when Delphi is operating.
Price: US$199, includes full source
code, printed documentation and online
help file, free technical support by
phone, e-mail, and fax, and a 60-day
money-back guarantee.
Contact: TurboPower Software Co.,
PO Box 49009, Colorado Springs,
CO 80949-9009
Phone: (800) 333-4160 or
(719) 260-9136
Fax: (719) 260-7151
BBS: (719) 260-9726
CIS Forum: GO PCVENB
Web Site: http://www.tpower.com
New Delphi Components for Internet Programming

Software Avenue, Inc. of

Gilbert, AZ has announced
the release of The Internet
Developer’s Kit for Delphi.
The kit contains two new
Delphi components, a docu-
ment viewer, and 16- and
32-bit versions of the com-
ponents. The two Delphi
components, InternetClient
and InternetServer, provide
access to the Windows
Socket library (WINSOCK).
The InternetClient com-
ponent can be used to cre-
ate various applications,
from a Finger client to a
World Wide Web Browser.

The InternetServer com-
ponent can manage as
many as 100 simultaneous
client connections.

With this component,
and an Internet SLIP
account, Delphi developers
can create Internet servers.
The kit also contains a
series of documents collect-
ed from various Internet
sites. This information
describes the standards and
protocols for common
Internet services. The
printed documentation
provides installation
instructions, a detailed
description of both compo-
nents, and programming
examples. Context-sensitive
online help is also available
from within Delphi.

Price: US$249.95, plus shipping and
handling.
Contact: Software Avenue, Inc.,
PO Box 1324, Gilbert, AZ 85234
Phone: (800) 813-0876 or
(602) 813-0876
E-Mail: CIS: 76455,3236
Web Site: http://ourworld.compu-
serve.com:80/homepages/Software-
Avenue/
Delphi Informant June 1996 3

Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Delphi 2 Unleashed

Charles Calvert
SAMS Publishing

ISBN: 0-672-30858-4
Price: US$59.99
(1,400 pages, CD-ROM)
Phone: (800) 428-5331
Mobius Ltd. of Springfield,
MA announced the availabili-
ty of Mobius Fast Sprites.
These native Delphi 2 com-
ponents are designed to pro-
vide animation through the
Windows 95 Games SDK
and DirectDraw DLLs.

Fast Sprites enables Delphi 2
game developers to control
video hardware using COM
architecture. They allow devel-
opers to set screen resolutions,
grab the CPU, and command
the video card to create sprites
and animation without code.

Fast Sprites also handles
screen (buffer) flipping and
updating in sync with the
vertical blank, giving
smooth tear-free graphics.
Refresh rates have been
clocked at over 70 FPS on
an ATI Mach 64 Graphic

Game Tools for Delphi 2
Xpression video card with a
DX4 66 CPU. Fast Sprites
are the first components of
a complete suite; additional
components are currently
planned.

Price: Promotional offer US$149,
includes online help file and joystick
component. Registered users receive
updates free for one year.
Contact: Mobius Ltd., 75 Dwight Rd.,
Springfield, MA 01108
Phone: (413) 827-9747
Fax: (413) 827-9747
Internet: CIS: 73563,533
Web Site: http://www.xmission.com/-
~imagicom/mobius/mobius.html
Shoreline Releases New Version of VisualPROS for Delphi 2

Shoreline Software of

Vernon, CT has released ver-
sion 2.0 of its VisualPROS
for Delphi, an add-on com-
ponent set for enhancing
graphical user interfaces. The
new version adds 16- and
32-bit versions of controls,
optimizations, and full
source code in Object Pascal.

Written in Delphi 2,
VisualPROS controls typi-
cally add less than 20K-
30K to an application.
They use the existing
Delphi 2 framework,
reducing the amount of
code redundancy often
found in VBXes and other
components.

In this version, Shoreline
has provided optimized com-
ponents for bitmap manage-
ment, drop-in management
of both Windows 3.x .INI
files and Registry elements of
Windows 95, Windows NT,
and online help.

They also enhanced the
Tileback and HelpCloud
components. The Tileback
component now includes
texture mapping for dialog
box backgrounds with 25
texture choices, simultane-
ous display management of
both gradient fills and
bitmaps on form back-
grounds, one component
support for both MDI and
regular form backgrounds
with automatic detection,
and nine directional gradi-
ent fill types.
The HelpCloud component

now offers display, placement,
and transparent support for
user-drawn help clouds.
VisualPROS supports any

type of application created
with Delphi 2. The 32-bit
versions are not simple
ports of the 16-bit con-
trols, but are optimized for
32-bit execution.

VisualPROS’ online help
has been upgraded, and is
now integrated with Delphi
2. Printed documentation is
also available.

Currently VisualPROS is
available from Breakthrough
Technologies. For informa-
tion call (800) 813-7909,
(800) 323-1809, (602) 258-
2715, or fax (602) 258-2805.
An OCX version of the
product is expected to ship in
the second quarter of 1996.

Price: US$149.95
Contact: Shoreline Software,
35-31 Talcottville Rd. #123, Vernon,
CT 06066-4030
Phone: (860) 870-5707
Fax: (860) 870-5727
E-Mail: Internet: info@shoresoft.com.
Web Site: http://www.shoresoft.com
Delphi Informant June 1996 4

RoboHELP 95 HTML Edition Released by Blue Sky Software
 Delphi
T O O L S

New Products
and Solutions

New Delphi Book

Borland’s Official

No-Nonsense Guide to Delphi 2

Michelle Manning
SAMS Publishing
Blue Sky Software Corp., of
La Jolla, CA, has released
RoboHELP 95 HTML
Edition. This version allows
users to create HTML and
Windows Help files from the
same source code. RoboHELP
95 HTML Edition turns
Microsoft Word 7 for
Windows 95 into an author-
ing tool capable of creating
HTML files and Windows
Help systems simultaneously.

The RoboHELP 95
HTML Edition recognizes
the similarities between
HTML and Windows
Help, and provides a way
to create the HTML Home
page (including all HTML,
GIF, and MAP files, and
hyperlinks for a Web site
and/or intranet).

The RoboHELP 95
HTML Edition can also be
used to move information
from Windows Help to
HTML, making it available
on the Internet. In addi-
tion, the RoboHELP 95
HTML Edition is currently
the only authoring tool
providing simultaneous
HTML and Help creation
from single source code.

The RoboHELP 95
HTML Edition includes
Mastering HTML for Help
Authors, a guide to the
basics of HTML authoring.

Price: RoboHELP 95 HTML Edition,
special promotional price, US$699
(list price is US$897).
Contact: Blue Sky Software Corp., 7777
Fay Ave., Suite 201, La Jolla, CA 92037
Phone: (800) 459-2356 or
(619) 459-6365
Fax: (619) 459-6366
E-Mail: Internet: sales@blue-sky.com
Web Site: http://www.blue-sky.com
Wintertree Software Releases Updated Thesaurus Software
ISBN: 0-672-30871-1
Price: US$25 (386 pages)
Phone: (800) 428-5331
Wintertree Software Inc. has
announced the release of the
ThesDB Thesaurus Engine,
version 3.1, a database of syn-
onyms and a software library
to access the database.

Developers can use ThesDB
to add thesaurus and syn-
onym-finding capabilities to
their 16- and 32- bit applica-
tions. The thesaurus dialog
box permits keyword searches,
user-thesaurus maintenance,
and synonym selection. The
initial keyword and selected
synonym can be set and
retrieved by the application,
replacing the selected word
with a synonym. ThesDB also
suggests replacements for mis-
spelled or unknown words.
The new version includes

50,000 synonyms in over
3,100 word categories in the
American English main the-
saurus. Word categories in the
main thesaurus are classified
according to parts of speech:
adjectives, adverbs, nouns,
and verbs. In addition, users
can add custom word cate-
gories and synonyms.

ThesDB is available in
three forms: the Win16
SDK for 16-bit Windows
applications; the Win32
SDK for 32-bit develop-
ment; and the Source SDK
which includes the ANSI-C
source code to the ThesDB
engine and related software.
The Source SDK is suitable
for applications developed
on non-Windows plat-
forms, and includes Win16
and Win32 SDKs. All SDK
types include a 50-page
programmer’s guide and a
license to distribute applica-
tions royalty-free.

A demonstration version of
ThesDB is available from
Wintertree’s CompuServe
forum and Web page.
Price: Win16 SDK, US$399
(CAN$499); Win32 SDK, US$399
(CAN$499); and Source SDK,
US$1,499 (CAN$1,899). The Win16
and Win32 SDKs are available bundled
for US$699 (CAN$879).
Contact: Wintertree Software Inc.,
69 Beddington Ave., Nepean, Ontario,
Canada, K2J 3N4
Phone: (800) 340-8803 or
(613) 825-6271
Fax: (613) 825-5521
CIS Forum: GO WINSDK
Web Site: http://fox.nstn.ca/~wsi/
Delphi Informant June 1996 5

News
L I N E

June 1996

Delphi 2 Help File
Updated

Scotts Valley, CA —
Borland has released an
updated VCL.HLP file for

Delphi 2. The file,
VCL.ZIP, is available on

Borland Online
(http://www.borland.com)
and Borland’s new Delphi

2 CompuServe forum
(GO BDELPHI32).

An improved, but interim
version, this version fixes
most of the broken jumps
reported by the help com-
piler. It also amends the
missing popup menus for
the properties, methods,

and events of TTable,
TQuery, TStoredProc, and

TSession.
Delphi 2 Takes First Place in NSTL Comparative Ratings Report

Scotts Valley, CA — In a

product evaluation of client/-
server development tools con-
ducted by National Software
Testing Laboratories (NSTL),
Delphi Client/Server Suite 2
received the highest overall
rating out of four develop-
ment packages.

Outperforming Powersoft’s
PowerBuilder Enterprise for
Windows, Microsoft’s Visual
Basic Enterprise Edition, and
Gupta’s SQLWindows,
Delphi Client/Server Suite 2
was cited as “the fastest, most
versatile, and easiest to use of
the evaluated products.”

NSTL’s Software Digest
and PC Digest Ratings
Reports are used by many
industry analysts and editors
as a source of objective
analysis of personal comput-
er hardware and software,
and also as buying guides for
“SD ’96 West: Internet Tools Unveiled ”
continued on page 7
Fortune 1000 companies
and government agencies.

“Delphi’s performance is
head and shoulders above all
its competitors,” reported
NSTL in the March
Software Digest Ratings
Report on Client/Server
Development Tools (Volume
13, Number 3). “(Delphi)
offers performance superiori-
ty across the board: database
and non-database operations,
browsing entire database
tables, executing queries, or
searching for data.”

For a copy of the NSTL
report, contact the NSTL
Testing and Distribution
Center at (610) 941-9600.
User-Based Pricing for Borland’s InterBase

Scotts Valley, CA — Borland

International has outlined its
new user-based pricing
scheme for InterBase. Under
this program, the initial server
purchase includes five user
licenses. Pricing for additional
users is identical across Intel
platforms, including NT,
NetWare, and SCO. For
applications requiring more
than five users, additional
user license packs are available
in single, 10, and 20 packs.
The InterBase 4.0, 5 User

Starter Bundle includes a sin-
gle copy of the media and
documentation, and both
client and server licenses for
five users. This package is pur-
chased for every new server,
and is priced at US$850. It is
available for Windows NT,
NetWare, and SCO OS 3.0.
The InterBase 4.0

Client/Server Access License
Bundle, single user, contains
one client and one server
license so developers can add
additional users to an existing
server. This license is not plat-
form specific. Media and doc-
umentation are not included,
but client libraries may be
copied from the original serv-
er bundle diskettes. InterBase
4.0 Client/Server Access
License Bundle for a single
user is priced at US$170.

The 10-user pack for
InterBase 4.0 Client/Server
Access License Bundle is the
same as the single user bun-
dle, except it includes 10
client and 10 server access
licenses. The 10-user pack is
priced at US$1,350.

InterBase 4.0 Client/Server
Access License Bundle, 20-
user pack, has 20 client and
20 server access licenses. Its
features are identical to the
single user bundle in all
other respects, and it’s
priced at US$2,400.

For more information, visit
Borland Online at
http://www.borland.com.
Borland Announces
Java-Enabled
InterBase InterClient

Scotts Valley, CA —
Borland International Inc.
has announced the InterBase
InterClient. Written in Java,
InterBase InterClient uses
InterBase as a SQL database
server to anonymously
access Web databases.

Based on Borland’s work
with JavaSoft and the JDBC
standard, the InterBase
InterClient is designed to
deliver the benefits of Internet
technologies into corporate
organizations. It will contain
client and server components
for interfacing with the Web.
The InterBase InterClient is

expected to enable distributed
transaction processing by the
Java client and the database
server, eliminate updating
client database libraries,
reduce overall traffic on the
network, speed access to serv-
er data, provide automatic
download of public Internet
data to the client, and will not
require developers to install
client database libraries.
Software Development ’96 West Update
“Borland Announces InterClient”
continued on page 7
San Francisco, CA — Amid
a sea of vendors, over
12,000 attendees gathered at
Moscone Center in San
Francisco, CA last March
for the ninth edition of
Software Development ’96
West. Over 100 new prod-
ucts were previewed at the
three-day event, most
addressing Internet and
intranet development.
Borland International,

Informix, Microsoft, NeXT,
Powersoft, Silicon Graphics,
Sun Microsystems, and Sybase
were among the key vendors
adding Internet and intranet
development tools to their
product groups.
Delphi Informant June 1996 6

News
L I N E

June 1996

“Borland’s C++ Wins SD ’96 Superbowl”
continued on page 8

Delphi Wins Jolt Cola
Award for Best

Development Tool
At Software Development
’96 West, Delphi was pre-
sented with the “Jolt Cola”

award for Technical
Excellence. It dominated
the competition which

included Microsoft’s Visual
C++ and Visual Basic,

and SunSoft’s Java.

On its way. Borland’s Latte.
The InterBase InterClient
using JDBC will allow Java
applets to be downloaded
and run in a Web browser,
bypassing traditional time-
access methods such as a
Common Gateway Interface
(CGI). The benefits to IS
managers include higher
throughput speeds, lower
traffic on the ’Net, and
enhanced modular applica-
tion design. InterBase
InterClient is also designed
to simplify intranet access by
presenting a unified interface
to all services and resources,
without requiring additional
software or hardware.

InterBase InterClient has
been designed and written
for the Windows and UNIX
32-bit platforms. Beta copies
are expected to be available
the second quarter of 1996.

Borland Announces
InterClient (cont.)
SD ’96 West: Internet Tools Unveiled (cont.)

Borland demonstrated how

to develop Internet tech-
nologies in client/server
applications with Delphi 2.
They also demonstrated how
Delphi can use Microsoft’s
Internet technologies,
including the Internet
Control Pack, ActiveX, and
WinInet and ISAPI applica-
tion programming interfaces
(APIs), to create a Delphi
Web browser client applica-
tion running on Windows
95, and a Delphi Web server
application running on
Windows NT.

Delphi components that
support Microsoft technolo-
gies are now available to cus-
tomers electronically on
Borland Online (http://www.-
borland.com) and Borland’s
CompuServe forums. Borland
also announced plans to add
server support for Netscape’s
NSAPI as well as other popu-
lar Web server APIs.

In addition, Borland
announced the release of their
new C++ Development Suite
5.0 for Windows 95 and
Windows NT, and previewed
Latte, a RAD development
tool for Java developers.

Sun Microsystems unveiled
several new Java-enabled
development tools, such as
Java Products Everywhere
(JOE), Internet Workshop,
Solstice FireWall-1 2.0, and
Solstice Messaging for Solaris
(IMAP 4). Call Sun
Microsystems at (415) 336-
6483 for more information.

Software Development ’96
East is scheduled for October
29-31, 1996 at the Washing-
ton Convention Center in
Washington, DC.
Borland Ships ReportSmith 3.0 for Windows 95 and Windows NT

Scotts Valley, CA — Borland

International Inc. has begun
shipping ReportSmith 3.0, a
new release of its client/serv-
er reporting and query tool
for Windows 95 and
Windows NT.

ReportSmith 3.0 includes a
set of tools for creating
columnar, crosstab, and
form reports using live data
while working with local
tables or client/server data-
bases. ReportSmith 3.0 fea-
tures 32-bit functionality,
updated native drivers for
accessing 32-bit client
libraries from Sybase,
Oracle, Informix, Microsoft
SQL Server, and Gupta
SQLBase, as well as 32-bit
ODBC drivers. It also has
multitasking capabilities,
support for PC and SQL
databases, a new API layer
for controlling ReportSmith
from other applications, and
integration with Delphi 2.

ReportSmith 3.0 is included
in Developer and Client/-
Server Suite versions of
Delphi 2. The stand-alone
package of ReportSmith 3.0
is available for US$179.95.
Previous owners of
ReportSmith may upgrade
for US$129.95.

For more information, call
Borland at (800) 233-2444.
Borland’s C++ Wins SD ’96 Superbowl

San Francisco, CA —

Borland International Inc.
announced its newly released
Borland C++ 5.0 won the
C++ Superbowl at Software
Development ’96 West. A
team of five judges chose
Delphi Informant June 1996 7

News
L I N E

June 1996

via Borland Online
Borland’s C++ Wins SD ’96 Superbowl (cont.)
Borland C++ 5.0 as the overall
winner over Microsoft’s Visual
C++. The judges selected
Borland C++ as the winner
based on the total number of
development problems
Borland C++ programmers
solved in an hour.

Borland recently
announced two new ver-
sions of its C++ products:
Borland C++ Development
Suite 5.0 and Borland C++
5.0. For complete details,
visit Borland Online at
http://www.borland.com.
Software Development is
produced by Miller
Freeman, Inc. For show
information, visit Miller
Freeman’s Web site at
http://www.mfi.com.
Borland Announces C++ 5.0 and ObjectScripting Contest

San Francisco, CA —

Borland International Inc.
has begun shipping its C++
Development Suite 5.0, that
combines five tools and
Borland C++ 5.0.

Along with Borland C++,
the suite features
CodeGuard 32/16, PVCS
Version Manager, and
InstallShield Express. It
also includes the new
AppAccelerator for Java, a
just-in-time compiler.

Available separately or as
part of the Suite, Borland
C++ 5.0 includes a 32-bit
hosted environment for tar-
geting multiple platforms,
including Windows 95,
Windows NT, Windows
3.1, and DOS. It also
includes ObjectWindows
Library (OWL) 5.0, sup-
porting the Windows 95-
based common controls and
16-bit emulation of most
Windows 95 common con-
trols; Microsoft Foundation
Classes (MFC) compilation
support; and Visual
Database Tools (VDBT).

Borland C++ supports
namespaces, the standard
C++ library, OCXes, inte-
grated 32-bit resource edit-
ing, and integrated 32-bit
debugging. It also features
free Java-compatible devel-
opment tools, (including
Sun’s Java Development
Kit), the Borland Debugger
for Java, AppExpert, and
color syntax highlighting
for Java code.

Borland C++ Development
Suite 5.0 is priced at
US$499.95, and Borland C++
5.0 is priced at US$349.95.

Upgrades are available on
CD-ROM, and include
online documentation;
diskettes and printed docu-
mentation are available sepa-
rately at an additional charge.
For more information, call
Borland at (800) 645-4559.

In addition, Borland has
announced a new Object-
Scripting contest, with the
grand prize winner taking
home a new laptop com-
puter. Included in Borland
C++ Development Suite 5.0
and Borland C++ 5.0,
ObjectScripting allows
developers to modify and
configure Borland’s inte-
grated development envi-
ronment (IDE).

Customers can submit
scripts directly to Borland
(http://www.borland.com).
The grand prize winner will
win a laptop computer
(estimated at US$4,000)
and be offered a speaking
engagement at the 1996
Borland Developers
Conference, scheduled for
July in Anaheim, CA.
Scripts awarded an
Honorable Mention will be
placed on a CD (or
diskette). Visit Borland
Online for more details.
Englewood, NJ —
Professional Computer
Solutions, Inc. (PCSI)
announced Joseph C. Fung
has been named Director of
Technology and Tools.

Previously Fung was a prin-
cipal of Farpoint Systems
Corp., a New York/New
Jersey-based consulting firm
specializing in developing
database applications with
Delphi, ObjectPAL, and
Visual Basic. The operations
of Farpoint Systems are
being merged into the opera-
tions of PCSI.

Fung currently writes for
Delphi Informant, Paradox
Informant, and other publica-
tions. He is the author of
Paradox for Windows Essential
Power Programming (Prima,
1995) and a co-author of
Delphi In-Depth
(Osborne/McGraw-Hill,
1996). He is the architect of
ScriptView and AppExpert,
perennial winners of the
Paradox Informant Reader’s
Choice Award.

In addition, Fung has served
as a guest lecturer for the
Borland Paradox 5.0 World
Tour, chaired an Advisory
Board for the Borland
Developer Conference ’95,
and served as advisory
board member for the
Borland International
Conference ’94.

Fung Joins PCSI
Delphi Informant June 1996 8

Do the Strand
An Introduction to Multithreading with Delphi 2

Do the Strand-o, when you feel low
It’s the new way, that’s why we say
Do the Strand
— Roxy Music, “Do the Strand”
For Your Pleasure ...

On the Cover
Delphi 2 / Object Pascal

By Joseph C. Fung
The Win32 API introduces the concept of multithreading to Windows 95
and Windows NT programs. Using multithreading, you can improve

performance by partitioning an application into multiple paths of execu-
tion. Although multithreading is very powerful, it adds a whole new level
of complexity to an application.
Fortunately, Delphi 2 provides the
TThread class so that you can work with
threads and the VCL (Visual Component
Library) in a thread-safe manner.

Spindles and Spools
In Windows 95 and Windows NT
(referred to here as Win32), an application
consists of a process and one or more
threads. A process is an instance of the
application and has its own virtual address
space, global variables, and operating sys-
tem resources. By itself, a process does not
execute. Instead, each process has a prima-
ry thread of execution that obtains time
slices from the CPU. This primary thread
executes the code in the application. When
this thread terminates, the process ends.

Win32 allows you to create additional
threads, or simultaneous paths of execu-
tion, within an application. Each of
these threads shares the address space of
the parent process so they have access to
the same global variables and resources.
Also, the operating system gives each of
these additional threads time slices so
they appear to execute concurrently. (In
a multiprocessor machine under
Windows NT, each thread may even
have its own dedicated CPU.)

Threads are useful because they let you
more efficiently use the computer’s
CPU(s) by partitioning an application
across threads, and, also, perform work
or lengthy processing in the background
while the user continues to interact with
the application.

The Win32 API provides facilities for you
to create and use additional threads in
your application. However, these facilities
alone do not permit you to use VCL com-
ponents in a thread-safe manner without
corrupting data. (“Thread safe” means
that two or more simultaneous processes
are designed in such a way that the code
being executed in one thread does not
interfere with the execution of the other.)

Fortunately, Delphi provides a TThread
class that encapsulates the threading
mechanism and works with the VCL.
You can use the TThread class along
with Win32 API functions to add pow-
erful multithreading capabilities to your
application.
Delphi Informant June 1996 9

On the Cover

Property Description

FreeOnTerminate Specifies whether the VCL automatically destroys
the thread upon termination. Default is False.

Handle The thread handle.

Priority Lets you set/get the thread’s relative priority.

OnTerminate An event property for the event handler that is exe-
cuted when the thread terminates.

ReturnValue The value returned by a thread.

Suspended A Boolean variable that lets you set/get the thread’s
suspended state.

Terminated A read-only Boolean that indicates if the thread
should terminate.

ThreadID The thread’s ID.

Figure 1: TThread class properties.
When to Use Additional Threads
Here are some situations where multithreading can be very
useful:

Often a user will initiate some work that requires a
lengthy process. With Windows 3.x and single-threaded
applications, the user interface is unresponsive while the
work is going on because the primary (and only) thread
cannot process window messages while it’s working on
some other task. This leaves the user in an unproductive
state while waiting for the task to complete. You can pre-
vent this by creating an additional thread to finish the
task in the background. This keeps the main user inter-
face very responsive and available to handle user interac-
tion while the work is being completed.

In an MDI (multiple document interface) application
where you have multiple documents represented by
child forms, you can give each child form its own thread
to perform any lengthy processing. If one of the child
forms initiates a lengthy process, the user can move to
one of the other child forms and continue working.

Windows NT supports machines with one or more
processors by distributing threads across the set of
CPUs. When you run a single-threaded application on
a machine with multiple processors, you may not be
efficiently using the additional processing power. By
partitioning the application using threads, you can bal-
ance the load and significantly increase the applica-
tion’s performance.

With a Windows 3.x application, you frequently used
a timer to perform work on a periodic basis by divid-
ing a repetitive or lengthy task into logical units and
executing the code when the timer event occurred.
Any such code should be examined because it’s a nat-
ural candidate for multithreading.

Windows 95 supports both 16- and 32-bit Windows
applications. To provide compatibility with 16-bit
Windows applications and to maintain a good level of
performance, Windows 95 contains a significant portion
of the old 16-bit Windows API system code. This code is
called by all Windows 3.x applications and by Windows
95 applications that make certain Win32 API calls,
including those to the GDI and USER modules. This
16-bit code was never designed to be used simultaneous-
ly by multiple threads, so access to it is protected.
Windows 95 internally uses Win16Mutex, a system-wide
mechanism for guaranteeing exclusive access to the code.

Essentially, whenever a thread makes a call to a pro-
tected 16-bit API function, any other thread
attempting to call any other 16-bit API function
waits until the first thread yields to Windows or
releases control. If an application doesn’t yield, or
stops processing window messages for a long time,
all these other applications will be tied up.
Unfortunately, this can leave Windows 95 applica-
tions unresponsive because many 32-bit API func-
tions, including those that handle the user interface,
actually call the 16-bit code base. To minimize the
effects of this, you can create additional threads to
perform the work in the background while the pri-
mary thread is waiting on the user interface.

Creating Threads Using the TThread Class
The Delphi 2 TThread class encapsulates the multithread-
ing mechanism so that you don’t have to rely solely on
Win32 API function calls to create threads. More impor-
tantly, the TThread class provides a facility to work with
VCL components in a thread-safe manner, and also sup-
plies a simpler alternative to thread local storage, a way to
associate data with individual threads.

You can work entirely with threads using the Win32 API.
However, you will be working at a lower level and also
must supply your own framework for synchronizing access
to the VCL. If you do not synchronize your thread’s access
to VCL properties and methods, you run the risk of cor-
rupting shared data and generating access violations.

The TThread class does not completely hide all the details
of working with the Win32 API. Instead, it’s a thin wrap-
per that removes the drudgery of VCL synchronization and
thread local storage. When you instantiate a TThread, the
class creates a new thread and stores its handle internally.

The TThread class is defined in the CLASSES unit, so be
sure to include this unit in your uses statement. Figure 1
lists the protected and public properties of the TThread
class, while Figure 2 lists the protected and public methods.

Using the TThread Class
The steps required to add multithreading to your Delphi 2
applications are fairly straightforward. For each new thread,
you first derive a new TThread class from the base TThread
class. Then you add code to instantiate the new object. You
can define the new thread class by adding the TThread type
declaration into an existing unit, or by creating a separate unit
to hold the TThread definition from the Object Repository.
Delphi Informant June 1996 10

Figure 2 (Top): TThread class methods.
Figure 3 (Bottom): The New Items dialog box.

Method Description

Create Create is the thread constructor.

Destroy Destroy is the thread destructor.

DoTerminate DoTerminate calls the OnTerminate event handler, if
one exists. DoTerminate executes as part of the thread,
as opposed to OnTerminate, which executes as part of
the process. It is unusual to override this method.

Execute Execute is a virtual, abstract method that you over-
ride to specify the thread's behavior. Do not call this
method; it is automatically called by the constructor.

Resume Resumes execution of a suspended thread.

Suspend Suspends execution of a thread.

Synchronize Synchronizes access to VCL properties or methods.

Terminate Sets a flag that tells the thread to end.

WaitFor Suspends execution until a specified thread is signaled.

On the Cover

Figure 5: The default unit created for the new TThread type.
To create a new thread unit for an existing project using
the Object Repository, select File | New. Delphi displays
the New Items dialog box, as shown in Figure 3.

When you select the
Thread Object icon from
this dialog box and click
OK, the New Thread
Object dialog box appears,
prompting you to name the
new class (see Figure 4).

After entering the name, a new unit appears containing a
basic TThread class declaration. For example, if you have a
new project, and then use the Object Repository to add a
second unit for a thread class named TMyThread, your
screen will resemble Figure 5.

After declaring the new class, you need to define the code
that goes into the TThread’s member functions. At a mini-
mum, you should place the thread’s main worker code into
the TThread’s Execute method, the place reserved for this
code. For instance, if your code performs a background cal-
culation, you should place this calculation in Execute.

Next, you should add code to store the TThread variable
in a global or member variable so that you can reference it

Figure 4: The New Thread Object
dialog box.
in your code. Finally, you should add the actual code to
create the new TThread and work with it. This code may
perform functions to suspend or resume execution of the
thread or even terminate it. These steps are described in
the following sections.

Creating a Thread
To create a new TThread, you declare a TThread class, a
variable or member variable of this class, and then call its
Create constructor. A constructor of the TThread type has
the following syntax:

Create(Suspended : Boolean);

When you call the constructor you pass to it a single
Boolean parameter, Suspended, that indicates if the thread
should be created in a suspended state. Normally, you
would pass a value of False so that the thread begins execu-
tion immediately.

Assuming that you have declared an object named
MyThread of the type TThread, the following code seg-
ment would create and execute it:

MyThread.Create(False);

Placing the Code for the Background Work
The TThread class defines a virtual abstract method,
Execute, that you override to implement the code for
your background task. The constructor for TThread calls
Execute immediately after creating the thread so you
don’t need to run it explicitly. When Execute is finished
running, the thread terminates and sets a return value
that you can query using the ReturnValue property.

The code that you place into Execute may perform some
background task such as a lengthy calculation or query. If
the code resides in a loop, the loop should contain some pre-
defined condition that breaks out when it’s True, such as
when a certain number of iterations have passed. You should
also place a test inside the loop to see if the Terminated prop-
erty is True. If so, your code should immediately exit the
Delphi Informant June 1996 11

On the Cover

Figure 6: The UpdateDisplay method for the TMyThread object.

// This method accesses the caption of a Label component.
procedure TMyThread.UpdateDisplay
begin

MyForm.ProgressLabel.Caption :=
'Up to ' + IntToStr(Count);

end;

procedure TMyThread.Execute;
begin

while WorkToDo do begin
DoSomeWorkMethod;

Synchronize(UpdateDisplay);

if Terminated then
Exit;

end;
end;
Execute method. (The reason why you need this additional
piece of code will become clearer later.) The following is an
example of the implementation code for an Execute method:

procedure TMyThread.Execute;
begin

while MoreWork do begin
CalculateSpreadsheet; { Perform some work }
if Terminated then

Exit;
end;

end;

Using VCL Components from within a Thread
There are special considerations to make if you plan to
access any of the VCL components from within your
thread. This is because the VCL is not implicitly
thread-safe. In other words, any unprotected access of a
component from within a thread may potentially cor-
rupt data or cause an access violation. This includes
calling any methods, and/or reading or writing from
any of a component’s properties.

Access to the VCL must be protected because multiple
threads may try to work with the same component
simultaneously, possibly leading to data corruption or
other unwanted side effects. Also, for performance and
efficiency, the VCL caches Windows GDI (Graphic
Device Interface) objects that handle screen painting.

Windows does not allow two or more threads to have simul-
taneous access to a GDI object. This may happen because
the VCL stores and reuses GDI objects — in this case, you
can get an access violation with multithreaded access.

Using Synchronize with the VCL. To address the issue of
thread-safe VCL access, the TThread class provides a
Synchronize method. If your thread needs to access a VCL
component, the thread should not do it directly. Instead,
you should put this code into a separate method, and then
execute this method by calling Synchronize.

Synchronize has the following syntax:

Synchronize(Method : TThreadMethod);

When you call Synchronize, you send a method to it by
value. Synchronize then executes this method in a
thread-safe manner. In most cases, you will want the
method that you pass to Synchronize to be a member of
the same derived Thread object. Doing so provides the
method with access to the object’s private interface and
variables.

The code fragment in Figure 6 shows how your code
might appear, and demonstrates how you can update a
component’s property from within a thread. A method
named UpdateDisplay is implemented for the TMyThread
class. Within this method, a Label component’s Caption
property is updated.
Within the Execute method for the Thread object, a while
loop continues to execute so long as a variable named
WorkToDo evaluates to True. Within this loop, a call is made
to a method named DoSomeWork. Next, this thread needs to
update the display of the Label component. To do this, it
calls Synchronize and passes UpdateDisplay as an argument.

Suspending and Resuming Threads
The TThread class provides the Suspend and Resume
methods to suspend and resume execution of a thread.
When a thread is suspended, it’s idle and no CPU
cycles are given to it.

To suspend a thread, just call the TThread object’s Suspend
method from another thread (primary or otherwise). A
thread can even suspend itself by calling its own Suspend
method. You shouldn’t do this, however, unless you expect
another thread to reawaken the suspended thread. To
resume execution, just call the TThread ’s Resume method.

Thread Priority
The TThread class defines the Priority property so that you
can dynamically change the priority of a thread. A thread’s
priority determines when and how often it’s scheduled for
execution by the operating system. By setting one thread’s
priority higher than another, you give it more CPU time. A
thread’s priority level ranges from 0 to 31, with 31 being
the highest level. By default, a newly created thread adopts
the same priority level as its parent process.

Setting a Thread’s Priority. A thread’s priority is measured
relative to the priority of its process. The VCL defines seven
priority levels that you can use to set the thread’s relative pri-
ority. They are part of the TThreadPriority enumerated type.

The five main priority levels are:
1) tpLowest
2) tpLower
3) tpNormal
4) tpHigher
5) tpHighest
Delphi Informant June 1996 12

On the Cover
A thread with a relative priority level of tpNormal has a
priority level equal to its process. With priority levels of
tpHigher and tpHighest, the thread’s relative priority is 1
higher and 2 higher than its process, respectively. With
priority levels of tpLowest and tpLower, the thread’s relative
priority is 2 lower and 1 lower than its process.

There are also two special priority levels: tpIdle and
tpTimeCritical. If a thread’s priority is tpIdle, its priority is
always set to 1, unless its process is 24 or higher (real-
time). In this case, the thread’s priority level is set to 16. If
the thread’s priority is tpTimeCritical, its priority is always
set to 15, unless its process is 24 or higher. In this case,
the thread’s priority is set to 31.

Terminating a Thread
There are two recommended ways to terminate a thread
when using the TThread class: you can call Exit from the
TThread ’s Execute method, or you can call the TThread ’s
Terminate method.

Calling Exit to Terminate a Thread. The bulk of the code
responsible for performing your background task resides in
the Execute method. When this code finishes running, it
should exit the Execute method. This can happen implicit-
ly as the last action of the method or if you call Exit.
When Execute finishes, the thread terminates and the
TThread class takes care of any cleanup.

Calling Terminate from Another Thread. A second way to
terminate a thread is to call the thread’s Terminate method.
Typically, you do this when you want to terminate a specif-
ic thread from the main thread or from another thread.

Terminate does not actually terminate the thread, but
Figure 7: The demonstration project at work, showing the main form and two of its
sets the Terminated property to
True. It’s then up to your code to
check the value of Terminated
from inside the thread’s methods,
and to act appropriately to exit the
Execute method. If you do not
have any code that does this, call-
ing Terminate is ineffective.

The following code segment illus-
trates how this code might appear:

procedure TMyThread.Execute;
begin

while SomeCondition do begin
{ Do some work here }
DoSomeWork;
if Terminated then

Exit;
end;

end;

After performing a unit of work,
the if statement checks the value of
Terminated, and exits the method if
it’s True.
worker forms.
A Multithreading Example:
Using Child Forms and Worker Threads
In an MDI application, or in an application that displays
a form for each task, multithreading may be appropriate.
With multithreading, you can let each form have its own
thread. This way the user can initiate a background task in
one form, and then continue to interact with other forms
while the background work is progressing.

In such a scenario, the primary thread handles all the
work of managing the user interface and responding to
window messages. Each time the user initiates a new task,
the primary thread creates a new form and gives it its own
“worker” thread.

This next example illustrates how you can open new
forms, each owning its own worker thread. The lengthy
task in this example is represented by iterating through a
long loop and updating a track bar to show the progress.

When you run the example in project WORK.DPR, the
Worker Thread Examples form appears. Each time you
press the New Thread button on this form, a new child
form is created with its own thread, and immediately
begins its work. Each new form has a unique caption
that identifies the “worker” (Worker 1, Worker 2, etc.).

Each form also contains a Suspend/Resume button that
allows you to suspend and resume the thread. Finally, if
you close the form before the thread is finished, the
form closes and the thread terminates.

Figure 7 depicts the main form surrounded by two
worker forms. Listing One (on page 14) shows the .PAS
file for this example.
Delphi Informant June 1996 13

On the Cover
Conclusion
Multithreading is a welcome feature to Win32
(Windows 95 and Windows NT) applications, but can
add complexity and unique problems of its own.
The TThread class encapsulates the threading process,
providing a facility for working with the VCL in a
thread-safe manner, and offering a way to associate
local data with each thread. This lets you pursue multi-
threading in earnest and add power and flexibility to
your business applications. ∆

Portions of this article abridged and reprinted by permis-
sion from “Using Multithreading,” Delphi In-Depth by
Cary Jensen, Loy Anderson, Joseph C. Fung, Ann
Lynnworth, Mark Ostroff, Martin Rudy, and Robert
Vivrette, published by Osborne/McGraw-Hill Companies,
Inc. Copyright 1996 by Osborne/McGraw-Hill
Companies, Inc. ISBN: 0-07-882211-4.

The demonstration project referenced in this article is
available on the Delphi Informant Works CD located in
INFORM\JUNE\96 \DI9606JF.
Joseph C. Fung is Director of Technology and Tools at PCSI, a leading
client/server and Internet/Intranet consulting and development firm. He writes
for Delphi Informant and Databased Advisor; and is the co-author of Delphi In-
Depth and the author of Paradox for Windows Essential Power Programming.
Mr Fung is the architect of AppExpert and ScriptView, perennial winners of the
Databased Advisor Reader’s Choice Award and Paradox Informant Reader’s
Choice Award. Recently, Mr Fung chaired an Advisory Board for the Borland
Developer Conference.

PCSI, Professional Computer Solutions, Inc., is a national leader in developing
SQL applications using Delphi, Visual Basic, and Access, and using Microsoft
SQL Server, Sybase, and Oracle server technologies. PCSI is a Borland
Connections Partner and Microsoft Solution Provider at the Partner level. The
main number for PCSI is (201) 816-8002.
Begin Listing One — The WORKTHD.PAS file
unit workthd;

interface

uses
Classes, Forms;

type
TWorkerThread = class(TThread)
private

{ Private declarations }
MoreWork: Boolean;
FOwnerForm: TForm;

protected
procedure Execute; override;

public
property OwnerForm:

TForm read FOwnerForm write FOwnerForm;
procedure UpdateDisplay;

end;

implementation

uses WorkForm, Windows, SysUtils;

{ TWorkerThread }

procedure TWorkerThread.UpdateDisplay;
begin

with (FOwnerForm as TWorkerForm) do begin
with WorkProgressBar do

if Position < Max then
begin

Position := Position + 1;
WorkProgressLabel.Caption :=

IntToStr(Position) + ' %';
if Position = Max then

begin
MoreWork := False;
WorkerButton.Caption := 'Done';

end;
end;

end;
end;

procedure TWorkerThread.Execute;
begin

MoreWork := True;
while MoreWork do begin

{ Do some work here }
// Simulate work by putting thread to sleep 100 ms.
// Actually, we're just putting the thread to sleep.
Sleep(100);
if not Terminated then

Synchronize(UpdateDisplay)
else

Exit;
end;

end;

end.

End Listing One
Delphi Informant June 1996 14

InterBase vs. Paradox
Which Is Best for Your Application?

Informant Spotlight
InterBase / Paradox

By Kevin Bluck
I f you’re like me, when you first bought Delphi you didn’t pay much
attention to the Local InterBase Server bundled in the package. Most

likely, even if you were learning to build database applications, you
amused yourself for weeks using nothing but Paradox tables. In fact, like
me, you may have came from a Paradox background.
The products are so strongly associated that
many people have had difficulty making the
distinction. And rumors that Delphi would
replace Paradox compounded the problem.
Although it should be clear by now that this
isn’t the case, most developers still use Paradox
tables for their Delphi database development.
In short, I doubt many bought Delphi to get
their hands on the Local InterBase Server.

Piqued Curiosity
But, programmers are a naturally curious lot,
and many of them eventually began poking
at Local InterBase. At first glance, it doesn’t
seem that different from Paradox. You access
it using an alias, just as Paradox, and
although they have different names, the field
types are similar. You can even create
InterBase tables using the Database Desktop.
You use the same TTable and TQuery com-
ponents that are used for Paradox tables. In
short, the Borland Database Engine (BDE)
interface creates a convincing illusion that
InterBase tables behave like Paradox tables.

Except InterBase is supposed to be better some-
how. It’s an industrial-strength RDBMS, so it
must be bigger and faster that Paradox, right?

For many developers, though, disillusionment
soon sets in. After creating InterBase tables with
the Database Desktop, they discover they can’t
casually change field definitions by simply
restructuring as they can with Paradox tables.
All searches and indexes are case-sensitive,
unlike Paradox. Defining primary and foreign
keys seems easy, but changing them seems near-
ly impossible. Worst of all, some operations are
slower with InterBase than with Paradox. It
quickly becomes apparent that InterBase isn’t
automatically better than Paradox.

The idea that InterBase isn’t better than
Paradox is absolutely true. At least, it’s not
always better. The two products are significant-
ly different, and are intended to serve in differ-
ent situations. The only thing they really have
in common is that they both store data in
tables. They diverge rapidly from that point.

Each is a system with strengths and weak-
nesses. The trick is deciding which is appro-
priate for a particular application. And once
made, that decision fundamentally affects the
subsequent development effort.

Paradox Is File Based
Paradox is a file-based database system. The
data files contain data records that have a defi-
nite order. In other words, record number 106
will always be the same record until it’s physi-
cally moved within the file, perhaps as a result
of a sorting operation. Even more importantly,
it will always follow record 105 and precede
record 107, until that order is explicitly
changed. This allows the records to be easily
navigated by a cursor, since it’s possible to iden-
tify a record by its position within a table with-
out having to reference the data it contains.

This explicit physical ordering of records has
some advantages. Moving back and forth
through the data file is a simple matter, and
the records are easily refreshed when the cur-
Delphi Informant June 1996 15

Informant Spotlight
sor arrives at them. The concept of browsing is convenient for
users and developers. It allows records to be handled one at a
time, in a predictable order. This navigational behavior is one
of the major Paradox concepts that is difficult to transplant
into the InterBase world, and many Paradox developers have
a difficult time making the transition.

InterBase Is Set Based
InterBase is a true, set-based relational database system.
Tables aren’t stored in individual files. More importantly, the
records are not ordered. Mathematically speaking, sets are
unordered. Order is “discovered” only when the set is physi-
cally represented, such as when querying a database. You can’t
count on the same record being record number 105 twice in
a row, unless you explicitly impose a certain ordering on the
query. Since you can’t positively identify a record by its posi-
tion within the table, you must refer to values within the
record. Therefore, to positively identify a record, at least one
field or combination of fields must contain unique values for
each record. This is what’s known as a primary key.

It’s possible for more than one field or combination to pro-
vide unique values, in which case they form a pool of candi-
date keys. Since it’s important for a database management sys-
tem to identify individual records conclusively, the existence
of a primary key is crucial. A table that has a unique primary
key is called an R-table, and all data sets must be R-tables for
the relational model to work.

The advantage of this set-based conceptualization of data is
that sets and the operations that can be performed on them
have the property of closure. This means that when you per-
form a set operation on a set, it always produces another set,
which can then have another operation performed on it,
producing another set, ad infinitum. This is a powerful logi-
cal concept, and if it’s properly implemented, will remove
the physical characteristics of storage from consideration in
the application’s design. This is the foundation of the rela-
tional model.

Cursor-based systems such as Paradox allow you to work only
on one record at a time, repeating an operation when you
want to process groups of records. Set-based systems allow you
to manipulate a set of data as if it were a single entity, all com-
ponents of which will share the same fate. This has the poten-
tial of increasing the simplicity of application design and vast-
ly improving data integrity.

Strangely enough, the ANSI SQL specification, which pur-
ports to be a relational standard, doesn’t require a primary
key to be defined for each table. This means records within
the data sets that are produced by SQL queries don’t have to
be uniquely identified by value.

Even worse, the results of SQL queries, even if they come
from proper R-tables, don’t have to be R-tables themselves.
Because identification by value is the only reliable method of
identifying individual records within a set, the primary key is
a fundamental cornerstone of the relational model, and its
absence causes significant problems.

You will quickly discover how this rather incomprehensi-
ble omission by the ANSI committee will cause you prob-
lems while using Delphi and the BDE to develop SQL
applications — unless you exercise the discipline to ensure
that your queries always return correct R-tables. (We’ll
comprehensively cover the full implications of this in a
future article.)

Physical Design and Its Impact on Speed
Paradox is a client-based system where the data is completely
managed by the individual clients. Whenever data must be
read or manipulated in any way, it must be transported to the
Paradox application. Each application handles all processing
itself. If multiple users are accessing data simultaneously on a
network, each user’s application transports the data it requires
back to the user’s machine.

Each instance of Paradox has no regard for the others. If an
instance of Paradox needs to guarantee the stability of data
for any reason, it must forcibly prohibit other instances from
changing the data through a locking scheme.

When a Paradox application needs to search a table, the
necessary raw data and indexes must be loaded into the
client machine’s memory, the physical activity of the search
conducted, results produced, and the now-unneeded raw
data discarded. This activity is repeated for every operation
on every client. The file server holding the data files does
absolutely nothing more than send the requested raw data
over the network to the client machines, making absolutely
no attempt to process the data. In essence, it acts as a
remote hard disk.

What this usually means is that Paradox is speedy on a local
hard drive, but slows down dramatically over a network.
Network bandwidth can quickly become clogged with large
volumes of unprocessed data being shipped repeatedly to the
client machines. Even in a fairly small network environment,
performance degrades rapidly as new users arrive.

InterBase is a server-based system. Instead of different
processes physically manipulating the stored data, only one
central process running on the server machine has direct
access to the data. All the client applications make polite
requests to the server process, which does the actual process-
ing entirely on the server machine while the client waits.

When the server finishes, it passes only the result back to
the client, which then goes on about its business. The
most direct impact of this scheme is that the network
doesn’t need to be clogged with large volumes of redun-
dant raw data being sent to the clients. Also, the often
complex data processing tasks can be delegated from usu-
ally less powerful client machines to the usually more
powerful server machine.
Delphi Informant June 1996 16

Informant Spotlight
Notice that everything about InterBase’s design implies a
multi-user environment. InterBase was designed from the
ground up as a multi-user system. Paradox, on the other
hand, was designed primarily for a single user, with support
for multi-user capabilities added on.

InterBase Isn’t for Browsing
As mentioned earlier, despite the fact that InterBase is a true
RDBMS, it performs some operations more slowly than does
Paradox. For the most part, these are browsing operations —
natural for Paradox — that the BDE is attempting to emu-
late with InterBase. The problem is most obvious if you have
a rather large table, perhaps 100,000 records, attached to a
TTable. If you call the TTable’s Last method, attempting to
move the record pointer to the last record, the performance
of the two systems will vary wildly.

The Paradox table’s cursor will move almost instantly
because it knows the physical location of the last record in
the data file and can simply increment the file pointer to
that location and retrieve the data. The InterBase table,
however, is going to present some problems. First, because
the data is unordered, there is some question about what
constitutes “lastness.” It must impose an order before it
can decide which record is “last.” By default, the last
record will be considered to be the record whose primary
key has the greatest value.

It’s now necessary to determine the value of the maximum
primary key. Once that value has been determined, the
record matching that value can be retrieved. However, if the
last few records must be retrieved, as would be the case in a
grid display, the process has to be repeated.

Now, InterBase must find the greatest primary key value that is
less than the maximum primary key value. For the third, it
needs the next-to-next-greatest primary key value, and so forth
until the required number of records is found. An operation
that is a piece of cake for Paradox is a major pain for InterBase.
In general, attempting to navigate backwards through SQL
tables is inefficient. The BDE buffers groups of records to min-
imize this problem, but if you go backwards far enough, you’ll
have to pause for significant amounts of time in large tables.

Locking
Whenever two users attempt to change the same piece of data,
problems can arise that threaten the integrity of the database.
Paradox and InterBase address this problem in different ways.

Because Paradox has no direct knowledge of what other
Paradox processes are doing, it uses a pessimistic locking
scheme. As soon as a user attempts to change a record, the
record is locked. No other user can change the record until
the first user finishes editing, or cancels the changes. This is
good, in that a user who successfully obtains a lock can defi-
nitely complete the editing operation. It’s also bad, because a
user can monopolize a record indefinitely. This would be a
problem, for example, in a travel reservation system. An inde-
cisive traveler can lock down a seat for a long time, causing
others to believe the seat is taken, only to decide not to take
the seat after all.

InterBase, on the other hand, handles all data manipulation
by itself using an optimistic concurrency scheme. It’s therefore
in a better position to manage contention among users with-
out resorting to Draconian locking tactics. The fact that one
user may be in the process of changing a record will not pre-
vent other users from also attempting to change it. Whenever
a user begins to change a record, InterBase saves a copy of the
original record. The user goes about his or her business, but
other users are not prohibited from accessing the same record
in any way.

When the editing user posts the changes, the original copy is
compared to the current record. If the versions are different
(most likely because another user beat them to the punch)
the user’s changes are rejected.

What this means is that individual users can’t lock others out
of records. In the above travel reservation scenario, the first
traveler to commit a reservation gets the seat, even if several
were considering it simultaneously. The downside, of course,
is that the changes are not rejected until the record is posted,
after the work of editing has been done. This can be mitigat-
ed, however, by refreshing the changed fields and resubmit-
ting. TTable and TQuery do this transparently, for example,
using the UpdateMode property. The post can be resubmitted
if all fields match the originals, only the changed fields
match, or only the primary key matches, whichever is appro-
priate to ensure integrity.

The two approaches reflect a basic difference in philosophy.
The Paradox pessimistic model assumes that collisions will
be common, and gives strong control of the record to who-
ever seizes it first. The optimistic InterBase model assumes
that collisions will be rare, and maximizes the ability of users
to share data without interfering with one another, while
still maintaining integrity.

An important benefit of the InterBase model is that one
user who wants to see a stable data set, perhaps to generate
a series of reports that need to reflect the same snapshot of
data, will not interfere with other users who want to change
the same data. In Paradox, the report generator would have
to place a write lock on the table to guarantee the data will
not change, and nobody can update data in that table as
long as the lock exists.

In InterBase, old versions of records are retained as long as a
user is interested in them — so, other users do not have to be
prevented from updating the records. This means that in
InterBase, readers never prevent writers from succeeding, nor do
writers compromise the results of readers. InterBase is the only
SQL database that does this so transparently. When InterBase
proponents are asked what the advantages of InterBase are, this
record versioning is usually the first thing they mention.
Delphi Informant June 1996 17

Informant Spotlight
Transaction Processing
As you’ll recall, a basic premise of the set-based model is that sets
of data can be treated as individual entities, regardless of the set’s
specific contents. Transaction processing is an extension of this
idea. A transaction is a group of operations that must either all
succeed or all fail. It’s never acceptable only for some to succeed.

For example, your automated teller machine (ATM) performs
database transactions. Whenever you withdraw cash, two
operations must be performed for the bank to properly
account for its assets: The balance of your account must be
reduced, and the balance of cash on hand must also be
reduced by the same amount. Obviously, the preferred situa-
tion is for both operations to succeed, but if the power goes
off in the middle of the operation, it’s absolutely not accept-
able for one account to be updated and not the other —
both operations must fail to maintain the proper accounting.

Transaction processing allows this to happen. The operations
in a transaction are not permanent until the whole transac-
tion is committed. Until that time, it may be rolled back to
the starting point. A rollback can be explicitly triggered using
the Rollback method, or it can occur automatically when a
system failure occurs.

InterBase fully supports transactions. In fact, all operations
occur within the context of a transaction. In the absence of
explicit programmer control, the BDE automatically “wraps”
every operation in its own transaction. For example, every
time you post a record, a transaction is started and committed
immediately after the post. Using the TDatabase component,
you can explicitly control a single transaction and have it
encompass as many operations as you like.

However, the BDE does not fully support InterBase’s transac-
tion capabilities. TDatabase methods can only be used against
a single InterBase database, and only one transaction may
exist at a time for each BDE alias. InterBase itself supports
multiple simultaneous transactions per connection, and a
transaction can also encompass more than one database, but
the BDE doesn’t surface these abilities. You’ll have to make
calls to the InterBase API to use these features.

Paradox doesn’t support transactions. Whenever a record is post-
ed, the changes are permanently written to the table. It requires
another edit to manually change it back if a rollback is desired.
In addition, the system will not guarantee that a group of opera-
tions will all either succeed or all fail. It’s possible to simulate
some of this capability through some tricky programming and
temporary tables, but eventually the records must be modified
one at a time in a batch, which leaves a window for failure. And
there’s no way you can program a Paradox application to recover
from a system failure such as a power outage or disk crash.

Triggers and Procedures
A stored procedure is a piece of code that is stored in the
database along with the data. It allows the server to per-
form complex manipulation of data entirely on the server.
The main advantages are that even more complex process-
ing can be delegated to the server, and any number of dif-
ferent client applications can call the same procedures. If
the procedure is modified on the server, none of the appli-
cations has to be rewritten as long as the procedure’s inter-
face remains the same.

A trigger is short for triggered procedure. It’s a stored proce-
dure that is not explicitly called by an application, but is exe-
cuted in response to a data action, such as inserting a new
record. Triggers allow you to perform extremely complex data
validation, and are guaranteed to execute within the same
transaction that performed the triggering operation. If any
operation fails, all changes made by triggers associated with
that operation are also rolled back.

InterBase supports stored procedures that return result
sets, which can be treated exactly as read-only tables, as
well as triggers that simply perform data transformations
and don’t return any results. It supports essentially unlim-
ited numbers of triggers for each table, which can occur
before or after inserts, updates, and deletes. If more than
one trigger is associated with an operation, their order of
execution can be specified. Triggers can make changes that
execute other triggers, in a chain-reaction fashion, but all
such cascading actions are still contained within a single
transaction.

Paradox does not support either of these concepts. All data
processing must be done at the client. Each application must
contain the same code to maintain the data, and each appli-
cation must be modified if the method of handling data
must be changed.

There is no guarantee that an operation will be completed
once it’s started. For example, cascading the delete of a
master record to its detail records can fail in midstream,
leaving details undeleted. If this cascade were implemented
as a trigger in InterBase, either all or none of the records
would be deleted. Furthermore, the code to cascade the
delete must be written into each different application that
uses the Paradox data. Using InterBase, it only needs to be
written once in a trigger. The application simply deletes
the master record and InterBase takes care of deleting the
detail records.

Making the Choice
Choosing between Paradox and InterBase has important
implications for your project. Accordingly, it’s essential to
know what is important for your situation. Figure 1 shows
some general principles that can help you make a decision.

These are guidelines, not rules. Most of them assume a net-
work is involved. If you are contemplating a single-user system,
Paradox is usually the best choice. The Local InterBase Server
can be deployed as a single-user system, but without concur-
rency issues, many InterBase features don’t apply. If the ability
to browse data is important, Paradox is also a good choice.
Delphi Informant June 1996 18

Paradox Is Better When ... InterBase Is Better When ...

Primarily used by fewer than
10 concurrent users.
Data and data structures must
easily be modified by end-users.
Client machines are compara-
ble in power to the server.
Plenty of network bandwidth.
Speed and convenience are
more important than integrity.
Little network and SQL
expertise is available.
Only one application will
routinely access the data.
Applications will be responsi-
ble for maintaining data
integrity.
Small to moderate amounts
of data (< 100MB).

Primarily used by more than
10 concurrent users.
Data should be centrally
maintained and protected.
Server is much more powerful
than the clients.
Network is loaded.
Data integrity is crucial.

Skilled network and database
administrators are available.
Several applications may
access the data.
Database will enforce data
integrity independently of
applications.
Moderate to large amounts of
data (>100MB).

Figure 1: Comparing Paradox and InterBase.

Informant Spotlight
Conclusion
It’s important to remember that Paradox and InterBase are
substantially different systems, even though the BDE
attempts to make them look similar. It’s a seductive, but dan-
gerous idea that converting an application from one to the
other involves nothing more than changing an alias. They
require significantly different design concepts, and a design
that is efficient with one will likely not be with the other.
Selecting which system to use is a crucial decision that must
be made at the start of a project. It will profoundly impact
your subsequent development effort. ∆
Delphi Informant June 1996 19

Kevin J. Bluck is an independent consultant based in Sacramento, CA. His specialty
is database development with Borland products such as Delphi, Paradox, Borland
C++, and InterBase. Kevin can be reached on CompuServe at 103447,3510, or
on the Internet at kevinbluck@aol.com.

DBNavigator
Delphi 2 / Object Pascal

By Cary Jensen, Ph.D.

Strainless Filtering
Delphi 2’s New and Powerful Filtering Capabilities
A common need in database applications is the ability to display or
manipulate a subset of records. As described previously in this column,

you can do this in Delphi 1 using ranges, linked DataSets, and SQL
queries. Delphi 2 now offers you one more choice: filters. This month’s
DBNavigator takes a look at this new feature.
The Delphi 2 filter capability is available
through the three descendants of TDBDataSet:
TTable, TQuery, and TStoredProc. And there
are four properties involved: Filter, Filtered,
FilterOptions, and OnFilterRecord (an event
property). Using these properties, you can
instruct a DataSet to display fewer than all of
its records. What makes filtering special, as
opposed to using ranges and linked DataSets
(the only other techniques that work with all
TDataSet descendants), is that filters do not
require an index. As a result, filters are more
widely applicable than the other record-limit-
ing techniques.

Although the primary application of filters is to
limit the records displayed in a DataSet, there is
an additional capability offered by filters that is
unmatched by ranges, linked DataSets, and
SQL queries. Specifically, filters permit you to
display an entire database and still navigate
only the records that match the filter. For
example, you can set a filter to match records
based on the state of California, but still display
all records in the DataSet. Then, use the four
new DataSet methods that let you move to the
first, last, next, and previous record where the
Customer resides in California, skipping over
any records in between. The non-California
records will still appear among the California
records, but Next (for instance) will move to
the next California record.

This article will demonstrate three applica-
tions of filters. The first application makes
use of properties alone. The second demon-
strates the use of the new OnFilterRecord
event handler. Finally, the use of filters to
navigate records is demonstrated.

Filtering with Properties
There are two properties that — used together
— produce a filtered DataSet. The properties
are Filter and Filtered. Filtered is a Boolean
property that you use to turn the filter on and
off. If you want to filter a record, set Filtered
to True; otherwise set Filtered to False.

When Filtered is set to True, the DataSet uses
the value of the Filter property to identify
which records to display. You assign to this
property a string that contains at least one
comparison operation involving at least one
field in the DataSet. You can use any com-
parison operators, including =, >, <, >=, <=,
and <>. As long as the field name doesn’t
include spaces, you can include the field
name directly in the comparison without
delimiters. For example, if your DataSet
includes a field named Country, you can set
the Filter property to the following value to
filter only for customers in the US:

Country = 'US'

If the field named includes a space (field
names in Paradox tables can include spaces),
you must enclose the named field in brack-
ets. For example, if your DataSet is a Paradox
table, and you want to display only those
records where the customer’s last name is
Jones, and the field name in the table is last
Delphi Informant June 1996 20

DBNavigator

Figure 1 (Top): The main form for the FILTER.DPR project. This
project permits the user to enter a filter statement at run time.
Figure 2 (Bottom): The Customer table is being filtered. Only
those companies that are located in the US, and whose last invoice
date is later than or equal to January 1st, 1995, are displayed.
name, you would assign the following value to the Filtered
property:

[last name] = 'Jones'

These examples have demonstrated only simple expressions.
However, complex expressions can also be used. Specifically,
you can combine two or more comparisons using the and, or,
and not logical operators. In addition, more than one field can
be involved in the comparison. For example, you can use the
following Filter property value to limit records to those where
the City field is San Francisco, and the last name is Martinez:

City = 'San Francisco' and [last name] = 'Martinez'

However, a value assigned to the Filter property does not
automatically mean that records will be filtered. Only when
the Filtered property is set to True does the Filter property
produce a filtered DataSet. Furthermore, if no value appears
in the Filter property, setting Filtered to True has no effect.

The use of the Filter and Filtered properties is demonstrated in
the project FILTER.DPR, whose main form is shown in
Figure 1. This project contains an Edit component, in which
the user can type a filter string. The OnExit event handler for
this property assigns the Text property of this Edit component
to the Filter property of the DataSet. Figure 2 shows this form
after a filter string has been entered. Notice that only those
records that match the Filter are displayed in the form’s
DBGrid.

The form in Figures 1 and 2 also contains two CheckBox
components. These components control a third filter-related
property of DataSets, the FilterOptions property. This proper-
ty is a set property, with two values: foCaseInsensitive and
foNoPartialMatch. When foCaseInsensitive is included in the
set, the filter is not case-sensitive. When foNoPartialMatch is
included in the set, partial matches are also included in the
filtered DataSet. Note, however, in my admittedly limited
testing, I could find no affect of the foNoPartialMatch value
in this set. In all my tests, all comparisons were complete.
The following code, attached to the OnChange event handler
for the Case Sensitive check box, demonstrates the run-time
manipulation of the FilterOptions property:

procedure TForm1.CheckBox1Click(Sender: TObject);
begin

if not CheckBox1.Checked then
Table1.FilterOptions :=

Table1.FilterOptions + [foCaseInsensitive]
else

Table1.FilterOptions :=
Table1.FilterOptions - [foCaseInsensitive];

end;

Using the OnFilterRecord Event Handler
There is another — somewhat more flexible — way to define
a filter. Instead of using the Filter property, you can attach
code to the OnFilterRecord event handler for the DataSet.
This event handler is passed by reference a Boolean property,
named Accept, that you use to indicate whether the current
record should be included in the DataSet. You can perform
almost any test you can imagine with this event handler. If,
based on this test, you wish to exclude the current record
from the DataSet, you set the value of the Accept parameter
to False. Note that this parameter is True by default.

The use of OnFilterRecord is demonstrated in the project
ONFILT.DPR (shown in Figure 3). When the user marks
the check box labeled Show orders for the following year

only, the Filtered property of the DataSet (Table1 in
DataModule2) is set to True. The year to be filtered is con-
trolled by an UpDown control. In this case, the filtering is
being performed in the OnFilterRecord event handler for
the DataSet:

procedure TDataModule2.Table2FilterRecord(
DataSet: TDataSet; var Accept: Boolean);

begin
if (Table2.FieldByName('SaleDate').Value >=

StrToDate('1/1/' +
IntToStr(Form1.UpDown1.Position))) and

(Table2.FieldByName('SaleDate').Value <=
StrToDate('12/31/' +
IntToStr(Form1.UpDown1.Position))) then

Accept := True
else

Accept := False;
end;
Delphi Informant June 1996 21

DBNavigator

Figure 3: The ONFILT.DPR project demonstrates
This code uses
the Position
property of the
UpDown con-
trol (on Form1)
to accept only
those records
within the
specified year.
If the current
record passes
this test, the
value of Accept
is set to False.
Figure 4: The FILTNAV.DPR project demonstrates how you can
navigate a DataSet using a filter, even when the filter is not
being actively applied.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based database
development company. He is author of more than a dozen books, including the
upcoming Delphi In-Depth [Osborne/MacGraw-Hill, 1996]. He is also Contributing
Editor of Paradox Informant and Delphi Informant, and is this year’s Chairperson of
the Paradox Advisory Board for the upcoming Borland Developers Conference. You can
reach Jensen Data Systems at (713) 359-3311, or via CompuServe at 76307,1533.

the use of OnFilterRecord.
It’s important to note that if you set the Filter property to a
filter string, and also assign code to the OnFilterRecord prop-
erty, both will be applied when Filtered is True. That is, only
those records that match the filter string and those that are
accepted by the event handler will appear in the DataSet.

Navigating Using a Filter
Whether you have set Filtered to True or not, you can still use
a filter for the purpose of navigating selected records. For
example, although you may want to view all records in a
database, you may want to quickly move between records
that meet specific criteria. For example, you may want to be
able to quickly navigate between those records where an
unpaid account balance exists.

In Delphi 2 the DataSet objects surface four methods for nav-
igating using a filter. These methods are FindFirst, FindLast,
FindNext, and FindPrior. When you execute one of these
methods, the DataSet will locate the requested record based
on the current Filter property or OnFilterRecord event handler.
This navigation, however, does not require that the Filtered
property be set to True.

The use of these special properties is demonstrated in the
project FILTNAV.DPR, shown in Figure 4. As you navi-
gate the project, it is constantly setting the filter to the
state for the current record.

This is done by attaching the following code to the
OnDataChange event handler for the DataSource that
points to the CUSTOMER.DB table:

procedure TForm1.DataSource1DataChange(Sender: TObject;
Field: TField);

begin
Button5.Caption :=

'First ' + Table1.FieldByName('State').AsString;
Button6.Caption :=

'Last ' + Table1.FieldByName('State').AsString;
Button7.Caption :=

'Next ' + Table1.FieldByName('State').AsString;
Button8.Caption :=

'Prior ' + Table1.FieldByName('State').AsString;
Table1.Filter := '[State] = ' + #39 +

Table1.FieldByName('State').AsString +
#39;

end;
The first four lines of this event handler update the cap-
tions of the four buttons that the user navigates with using
the filter. The last line sets the filter. Notice the use of the
#39 character in this assignment statement. This is neces-
sary to enclose the State string in the single quotation
marks that identify string literals in Object Pascal.

The remainder of this project is very simple. The top four
buttons shown in Figure 4 call the table methods First,
Last, Next, and Prior. The second set of buttons calls the
new filtered navigation methods FindFirst, FindLast,
FindNext, and FindPrior.
Conclusion
The new filter feature of Delphi 2 provides you with a new
set of tools for presenting users with subsets of records, as
well as permitting them to navigate selected records, even
while viewing the entire DataSet.

These valuable new filtering capabilities are welcome.
However it’s important to emphasize that these filtering oper-
ations do not make use of indexes. Therefore you should use
these filtering techniques only on a subset (i.e. the result of a
query, view, or range) of a large database. ∆

The demonstration projects referenced in this article are
available on the Delphi Informant Works CD located in
INFORM\JUNE \96 \DI9606CJ.
Delphi Informant June 1996 22

From the Palette
Delphi 1/2 / Object Pascal

By Ray Konopka

Components &
Sub-Components
Encapsulating Multiple Controls

Figure 1: Editi
The ability to build custom components is one of Delphi’s most exciting fea-
tures. It is also one of its more popular features judging by the number of

components that are available on the World Wide Web, the Borland Delphi
CompuServe forum (GO DELPHI), and of course, the Delphi Informant
CompuServe forum (GO ICGFORUM). Aside from being Delphi components,
most of the components available from these sources have one thing in com-
mon: they encapsulate a single control. While this is certainly the norm, it is
by no means a restriction — the VCL is sufficiently rich to support encapsulat-
ing multiple controls. To illustrate the issues involved in this process, this article
describes how to create a data-aware address component.
The RzAddress component is a single com-
ponent that consists of separate sub-com-
ponents representing the different fields in
a typical US mailing address. The compo-
nent comprises five DBEdit components,
one DBComboBox, and six Label compo-
nents. The arrangement of these compo-
nents is illustrated in Figure 1, which
shows the RzAddress component being
used in an application.

Before getting into the details of the
TRzAddress class, you may be wondering
ng an address the easy way!
why anyone would want to build a compo-
nent like this. Aside from the ever popular
answer, “Because you can,” there are two
principle reasons for encapsulating multi-
ple controls in a single component: the
first is to promote reusability; the second is
to promote consistency.

For data entry applications, entering an
address is a common task. Unfortunately,
the forms used to enter address informa-
tion generally capture additional informa-
tion not relevant to the address. This extra
information prevents the form from being
reused in other applications. However, a
component like RzAddress forces you to
think about reusing a portion of the form,
rather than the entire form.

The second benefit, consistency, is more
of an issue with end users. Let’s continue
with the address example. Without a
reusable component, every application
that provides fields for entering an address
will vary — at least slightly — from the
others. The length of the last name field
may be shorter in one application than
another. The state field may be represent-
ed by an edit field in one program, and by
a combo box in another. By creating a sin-
Delphi Informant June 1996 23

From the Palette

Figure 2: Editing the FirstNameField property.
gle component to represent the group of controls, consis-
tency can be maintained between applications.

The TRzAddress Class
The RzAddress component is implemented in the RzAddr
unit (see Listing Two beginning on page 25). The
TRzAddress class descends from TWinControl because it
essentially needs to be able to contain other controls with-
in itself, and a window handle is needed to support this
feature. However, TWinControl is not your only option —
if you would like a border around the controls, the TPanel
or TGroupBox classes serve equally well as ancestors.

The private section of this class contains an object field for
each sub-component. The sub-components are created in
the Create constructor. One-by-one, each sub-component
is dynamically created and positioned within the
RzAddress component. Note that the coordinates passed
to the SetBounds method are relative to the main compo-
nent’s client area.

A few supporting methods are provided to make it easier
to construct the sub-components. These include
CreateLabel, CreateCombo, and CreateEdit. Each of these
methods creates an object of the appropriate type, and
then sets the Parent and Visible properties. The
CreateLabel method then sets the caption of the label,
while the CreateCombo method sets the Sorted property to
True. The CreateEdit method finishes by assigning the
OnChange event of the sub-component to point to the
TRzAddress.DoChange method. We’ll come back to the
importance of this later in the article.

After all the sub-components are created, the internal
FStateList is populated. FStateList is a string list object that is
used to populate the State combo box. The combo box itself
cannot be used to store the strings because it is dynamically
created, and therefore does not provide persistent storage. A
StateList property of TRzAddress could be displayed, but
there is no real need to give the user direct access to this list.

Because the string list is created within the component, a
destructor must be provided so the memory used by the
string list can be freed. Speaking of destructors: who’s
responsible for destroying the sub-components? Well, actu-
ally we are. What I mean is, the component writer is
responsible for making sure the sub-components are
released when the main component is destroyed. However,
you may have already noticed there is no code that specifi-
cally frees the sub-components.

When each sub-component is created, Self is passed to the
Create constructor. This causes the sub-component to be
placed into the TRzAddress.Components list. The Components
list is defined in the TComponent class, and when the main
component is destroyed, the inherited destructor from
TComponent frees all the components in the Components list.

So, as long as a valid owner is passed to the constructor for
each sub-component, we do not have to worry about clean-
ing up the sub-components.
Accessing Sub-Components through Properties
There are three basic ways of accessing a sub-component
through the main component. All three involve proper-
ties, and each provides a different level of control. The
first way is to provide the main component with a
generic property that gets mapped to each sub-compo-
nent. The DataSource property is an example of this
type of access. Notice that the TRzAddress class does not
maintain an internal field for holding the DataSource
value. Instead, the sub-components themselves are used
to manage the property. As you can see from the
SetDataSource method, when the TRzAddress.DataSource
is changed, the DataSource properties for all sub-compo-
nents are updated with the new value.

The second way of providing access to sub-components is
to provide individual properties that correspond to proper-
ties in each sub-component. FirstNameField, LastNameField,
and CityField are examples of this type of access. Each one
of these properties correspond to the DataField property of
one of the sub-components. Unlike the DataSource proper-
ty, these field names cannot be shared among the sub-com-
ponents. Figure 2 shows the FirstNameField property being
edited to link the corresponding sub-component to the
appropriate table column. (As an aside, the Field properties
also provide a good example of using indexed properties. All
six properties are supported by the same access methods:
GetField and SetField.)
The third way of providing access to sub-components is
to expose a reference to the sub-component. Because this
allows complete access to the sub-component, it is gener-
ally not wise to do. As an example, the EdtFirstName
property provides a reference to the FEdtFirstName edit
field. With this reference, the end user has access to the
properties of FEdtFirstName, and therefore, could affect
the way the entire RzAddress component behaves. For
example, the edit control could be moved or resized.
More dramatic is the problem of setting the DataSource
property of the FEdtFirstName field directly. A sub-com-
ponent reference can be used to bypass all other types of
access.
Delphi Informant June 1996 24

From the Palette
Exposing Events that Occur in Sub-Components
Earlier, I mentioned that each edit field created gets its
OnChange event assigned to the DoChange method. Like
properties, events can be exposed individually, or shared; but
because of the event architecture, a hybrid between the two
can be achieved. Any time a change event occurs in one of
the edit fields, the DoChange method is called. Since the
Sender parameter identifies which component generated the
message, this information can be passed on to the end user’s
event handler for the main component’s OnChange event.

The OnChange event for the RzAddress component receives
two parameters. The first parameter is an enumerated value
indicating the sub-component that generated the event. For
example, if the change event occurred in the FEdtCity edit
field, the first parameter would have a value of efCity. The
second parameter contains the current contents of the edit
field. Using these two parameters, a user can create a single
event handler to manage all of the OnChange events that
occur within each of the sub-components.

Conclusion
You may have noticed that encapsulating multiple controls
within a single component is very similar to dynamically
creating components on a form at run time. This is not
surprising since forms are part of the Visual Component
Library. In essence, a form just happens to be a very intelli-
gent multi-control component. Once the sub-components
are created, building a multi-control component simply
requires defining the interactions between the controls and
providing sub-component access.

Portions of this article are adapted from material in Ray
Konopka’s, Developing Custom Delphi Components [The
Coriolis Group, 1996]. ∆

The demonstration files referenced in this article are avail-
able on the Delphi Informant Works CD located in
INFORM\JUNE\96 \DI9606RK.
Ray Konopka is the author of Developing Custom Delphi Components, published
by The Coriolis Group. Ray is also the founder of Raize Software Solutions, Inc.,
supplier of Delphi consulting services. Ray can be reached at Raize95@aol.com
or 75107.2356@compuserve.com.
Begin Listing Two — The RzAddr Unit
{ RzAddr Unit. This unit implements the RzAddress

component which is comprised of the following edit
fields: FirstName, LastName, Street, City, and Zip. The
State field is actually a combo box which is populated
with the 50 states including the District of Columbia.
The edit fields are data-aware, and thus this component
can be hooked up to a DataSource.
Developing Custom Delphi Components — Ray Konopka }

unit RzAddr;

interface
uses
Classes, Controls, StdCtrls, DB, DBCtrls,
Graphics, ExtCtrls, RzCommon;

type
TEditField = (efFirstName, efLastName,

efStreet, efCity, efZip);
TEditChangeEvent =

procedure (Field : TEditField;
Text : string) of object;

TRzAddress = class(TWinControl)
private

FEdtFirstName : TDBEdit;
FEdtLastName : TDBEdit;
FEdtStreet : TDBEdit;
FEdtCity : TDBEdit;
FCbxState : TDBComboBox;
FEdtZip : TDBEdit;
{ Internal List of State Abbreviations }
FStateList : TStringList;
{ Common Change Event for all Edit Fields }
FOnChange : TEditChangeEvent;

function GetCharCase : TEditCharCase;
procedure SetCharCase(Value : TEditCharCase);
function GetDataSource : TDataSource;
procedure SetDataSource(Value : TDataSource);
function GetField(Index : Integer) : string;
procedure SetField(Index : Integer; Value : string);
function CreateEdit : TDBEdit;
function CreateLabel(S : string) : TLabel;
function CreateCombo : TDBComboBox;
procedure CreateStateList;
procedure DoChange(Sender : TObject);

protected
procedure Change(Field : TEditField;

Text : string); dynamic;
procedure CreateWnd; override;

public
constructor Create(AOwner : TComponent); override;
destructor Destroy; override;

property EdtFirstName : TDBEdit
read FEdtFirstName;

published
property CharCase : TEditCharCase

read GetCharCase write SetCharCase;

property DataSource : TDataSource
read GetDataSource write SetDataSource;

property FirstNameField : string
index 1 read GetField write SetField;

property LastNameField : string
index 2 read GetField write SetField;

property StreetField : string
index 3 read GetField write SetField;

property CityField : string
index 4 read GetField write SetField;

property StateField : string
index 5 read GetField write SetField;

property ZipField : string
index 6 read GetField write SetField;
Delphi Informant June 1996 25

From the Palette
property OnChange : TEditChangeEvent
read FOnChange write FOnChange;

property Font;
property ParentFont;

end;

procedure Register;

implementation

uses
DsgnIntf;

{ TRzAddress Methods }
constructor TRzAddress.Create(AOwner : TComponent);
var

TempLbl : TLabel;
begin

inherited Create(AOwner);

{ All labels are created using the TempLbl component
because we do not need to reference these controls
elsewhere. Clean up is handled when the TComponent
ancestor class frees all components on the Components
list. }

TempLbl := CreateLabel('First Name');
with TempLbl do SetBounds(0, 8, Width, Height);
FEdtFirstName := CreateEdit;
FEdtFirstName.SetBounds(67, 4, 97, 20);

TempLbl := CreateLabel('Last Name');
with TempLbl do SetBounds(182, 8, Width, Height);
TempLbl.Alignment := taRightJustify;

FEdtLastName := CreateEdit;
FEdtLastName.SetBounds(240, 4, 137, 20);

TempLbl := CreateLabel('Street');
with TempLbl do SetBounds(0, 36, Width, Height);
FEdtStreet := CreateEdit;
FEdtStreet.SetBounds(67, 32, 310, 20);

TempLbl := CreateLabel('City');
with TempLbl do SetBounds(0, 64, Width, Height);
FEdtCity := CreateEdit;
FEdtCity.SetBounds(67, 60, 121, 20);

TempLbl := CreateLabel('State');
with TempLbl do SetBounds(200, 64, Width, Height);
TempLbl.Alignment := taRightJustify;
FCbxState := CreateCombo;
FCbxState.SetBounds(240, 60, 50, 20);

TempLbl := CreateLabel('Zip');
with TempLbl do SetBounds(300, 64, Width, Height);
TempLbl.Alignment := taRightJustify;
FEdtZip := CreateEdit;
FEdtZip.SetBounds(326, 60, 51, 20);

CreateStateList;

Width := 382;
Height := 86;

end; { = TRzAddress.Create = }

destructor TRzAddress.Destroy;
begin

FStateList.Free;
inherited Destroy;

end;
function TRzAddress.CreateLabel(S : string) : TLabel;
begin

Result := TLabel.Create(Self);
Result.Parent := Self;
Result.Visible := True;
Result.AutoSize := True;
Result.Caption := S;

end;

function TRzAddress.CreateEdit : TDBEdit;
begin

Result := TDBEdit.Create(Self);
Result.Parent := Self;
Result.Visible := True;
{ Assign OnChange event of each Edit field

to point to TRzAddress.DoChange method. }
Result.OnChange := DoChange;

end;

function TRzAddress.CreateCombo : TDBComboBox;
begin

Result := TDBComboBox.Create(Self);
Result.Parent := Self;
Result.Visible := True;
Result.Sorted := True;

end;

procedure TRzAddress.CreateWnd;
begin

inherited CreateWnd;

{ When CreateWnd is called, the Items list of FCbxState
is cleared. Therefore, the contents of the FStateList
are copied back into FCbxState. }

FCbxState.Items.Assign(FStateList);
end;

procedure TRzAddress.CreateStateList;
begin

FStateList := TStringList.Create;
FStateList.Add('AK');
FStateList.Add('AL');
FStateList.Add('AR');
FStateList.Add('AZ');
FStateList.Add('CA');
FStateList.Add('CO');
FStateList.Add('CT');
FStateList.Add('DC');
FStateList.Add('DE');
FStateList.Add('FL');
FStateList.Add('GA');
FStateList.Add('HI');
FStateList.Add('IA');
FStateList.Add('ID');
FStateList.Add('IL');
FStateList.Add('IN');
FStateList.Add('KS');
FStateList.Add('KY');
FStateList.Add('LA');
FStateList.Add('MA');
FStateList.Add('MD');
FStateList.Add('ME');
FStateList.Add('MI');
FStateList.Add('MN');
FStateList.Add('MO');
FStateList.Add('MS');
FStateList.Add('MT');
FStateList.Add('NC');
FStateList.Add('ND');
FStateList.Add('NE');
FStateList.Add('NH');
FStateList.Add('NJ');
Delphi Informant June 1996 26

From the Palette
FStateList.Add('NM');
FStateList.Add('NV');
FStateList.Add('NY');
FStateList.Add('OH');
FStateList.Add('OK');
FStateList.Add('OR');
FStateList.Add('PA');
FStateList.Add('RI');
FStateList.Add('SC');
FStateList.Add('SD');
FStateList.Add('TN');
FStateList.Add('TX');
FStateList.Add('UT');
FStateList.Add('VA');
FStateList.Add('VT');
FStateList.Add('WA');
FStateList.Add('WI');
FStateList.Add('WV');
FStateList.Add('WY');

end; { = TRzAddress.CreateStateList = }

procedure TRzAddress.Change(Field : TEditField;
Text : string);

begin
if Assigned(FOnChange) then

FOnChange(Field, Text);
end;

{ TRzAddress.DoChange. This method gets called if the
OnChange event occurs for any of the edit fields
contained in this component. The Change event dispatch
method is called to surface those events to the user. }

procedure TRzAddress.DoChange(Sender : TObject);
var

Field : TEditField;
begin

if Sender = FEdtFirstName then
Field := efFirstName

else if Sender = FEdtLastName then
Field := efLastName

else if Sender = FEdtStreet then
Field := efStreet

else if Sender = FEdtCity then
Field := efCity

else
Field := efZip;

Change(Field, TDBEdit(Sender).Text);
end;

function TRzAddress.GetCharCase : TEditCharCase;
begin

Result := FEdtFirstName.CharCase;
end;

procedure TRzAddress.SetCharCase(Value : TEditCharCase);
begin

if Value <> FEdtFirstName.CharCase then
begin

FEdtFirstName.CharCase := Value;
FEdtLastName.CharCase := Value;
FEdtStreet.CharCase := Value;
FEdtCity.CharCase := Value;
FEdtZip.CharCase := Value;

end;

end;

function TRzAddress.GetDataSource : TDataSource;
begin
{ Use FEdiFirstName to Get Current DataSource }
Result := FEdtFirstName.DataSource;

end;

procedure TRzAddress.SetDataSource(Value : TDataSource);
begin

if Value <> FEdtFirstName.DataSource then
begin

{ Assign All Internal Controls to Same DataSource }
FEdtFirstName.DataSource := Value;
FEdtLastName.DataSource := Value;
FEdtStreet.DataSource := Value;
FEdtCity.DataSource := Value;
FCbxState.DataSource := Value;
FEdtZip.DataSource := Value;

end;
end;

function TRzAddress.GetField(Index : Integer) : string;
begin

case Index of
1: Result := FEdtFirstName.DataField;
2: Result := FEdtLastName.DataField;
3: Result := FEdtStreet.DataField;
4: Result := FEdtCity.DataField;
5: Result := FCbxState.DataField;
6: Result := FEdtZip.DataField;

end;
end;

procedure TRzAddress.SetField(Index : Integer;
Value : string);

begin
case Index of

1: FEdtFirstName.DataField := Value;
2: FEdtLastName.DataField := Value;
3: FEdtStreet.DataField := Value;
4: FEdtCity.DataField := Value;
5: FCbxState.DataField := Value;
6: FEdtZip.DataField := Value;

end;
end;

{ Register Procedure }
procedure Register;
begin

RegisterComponents(RaizePage, [TRzAddress]);
{ The following RegisterPropertyEditor calls instruct

the Object Inspector to hold off accepting the text
entered into the specified fields until the Enter key
is pressed. }

RegisterPropertyEditor(TypeInfo(string), TRzAddress,
'FirstNameField', TStringProperty);

RegisterPropertyEditor(TypeInfo(string), TRzAddress,
'LastNameField', TStringProperty);

RegisterPropertyEditor(TypeInfo(string), TRzAddress,
'StreetField', TStringProperty);

RegisterPropertyEditor(TypeInfo(string), TRzAddress,
'CityField', TStringProperty);

RegisterPropertyEditor(TypeInfo(string), TRzAddress,
'StateField', TStringProperty);

RegisterPropertyEditor(TypeInfo(string), TRzAddress,
'ZipField', TStringProperty);

end;

end.
End Listing Two
Delphi Informant June 1996 27

OP Tech
Delphi / Object Pascal

By Keith Wood

Talking to Yourself
A Look at Recursion in Object Pascal
W e’ve all seen those cereal boxes that have pictures of someone holding
the same cereal box, which has another picture of someone, etc. This is

an example of recursion, and it’s a powerful tool for the programmer as well.
Recursion arises when something is defined
in terms of itself. Pascal allows for recursive
functions and procedures that are well suited
for particular programming problems. To
show how it all works, this article looks at
recursion in general, and presents a recursive
function, two recursive plotting procedures,
and a binary tree class.

Recursion
Normal processing in a program is iterative.
This means that part of the algorithm may
be executed in a for, while, or repeat loop.
In recursive processing, the entire algorithm
is re-executed from the beginning on a small-
er part of the problem.

Two things are necessary for using recursion in
programming. First, the problem must be
defined in terms of itself; second, it must have
a terminating condition. Since the portion of
the problem being solved at each level of recur-
sion is smaller than the previous step, eventual-
ly we get to a very small or easy problem for
which we can immediately provide the answer
(the terminating condition). This answer can
then be passed back up the levels for further
manipulation before obtaining the final result.

For particular types of problems, recursive
algorithms can provide a solution in a few
steps that would be extremely complex using
an iterative algorithm.

Within a function or procedure we make use
of values held in variables. Won’t these get
mixed up during recursion since we are call-
ing the same function? No — Pascal provides
separate variables each time the function is
called. They are only valid within that partic-
ular instance of the function, and retain their
values across any other recursive calls. Of
course this does have the effect that the space
available for variables (the “stack”) is slowly
eaten away as we go deeper into the recursive
calls. If this continues indefinitely, the space
is eventually exhausted and an error occurs.

Factorials
The factorial function in mathematics is a
classic recursion example. This function
computes the product of all the integers
between one and a given positive value (the
result gets very large, very quickly). It’s
denoted by the exclamation mark (!) and
can be defined by the following:

1! = 1
n! = n * (n - 1)!

In other words, one factorial is equal to one,
while n factorial — where n is any positive
integer greater than one — is equal to the
value n times the factorial of one less than n.
The first part of the definition is the termi-
nating condition and the second part is the
recursive call.

To implement this in Pascal we define a
function (see Figure 1) that takes one integer
parameter and returns a long integer
(remember that it grows very quickly). We
Delphi Informant June 1996 28

Figure 1: A recursive factorial function.

function Factorial(Value: Integer):LongInt;
begin

{ Check for invalid parameter }
if Value < 1 then

raise Exception.Create('Invalid value for Factorial');

{ Termination condition }
if Value = 1 then

Result := 1
else

{ Call function again with smaller value }
Result := Value * Factorial(Value - 1);

end;

Op Tech

Figure 4: Definition of the tree structure.
need to check that a valid value has been entered initially: it
cannot be zero or negative. If an incorrect value is found then
an exception is raised to notify the program of the problem.

With a valid value, we check for the terminating condition
(in this case the value being equal to one), stop the recursion,
and return the predefined result if this is so. If we are not at
the terminating condition, we need to call the function again
with the next lowest value, and compute the product with
the current value to obtain the final result.
Figure 2: Steps in computing 5!

Value Result
5 5 * 4!

4 4 * 3!

3 3 * 2!

2 2 * 1!

1 1

2 2 * 1 = 2

3 3 * 2 = 6

4 4 * 6 = 24

5 5 * 24 = 120
When called with a value
greater than one, the function
halts its execution at the
recursive call until the
required value is returned
from the next level down.
Once the terminating condi-
tion is reached, the results are
passed back through the pre-
ceding levels building up the
final result as it goes. Figure 2
is a picture of this process.

To see this in “real life,” we
can put a breakpoint on the
result of the terminating
condition (in this case, Result := 1) and then re-execute the
program. When it stops, display the call sequence with the
menu command View | Call Stack. The recursive function calls
and their parameters are shown in the Call Stack window.
The factorial function
is implemented in the
FACT1.PAS unit that
accompanies this arti-
cle. The project, FAC-
TRIAL.DPR (see
Figure 3), allows you
to select an input
value for the factorial
function between 0
and 12 (this being the limit for a long integer result). Note
that using zero results in an exception being raised; this has
been left to show what happens with invalid input.

Figure 3: Our example project,
FACTRIAL.DPR.
Plotting Trees
A routine that allows us to plot images of trees based on the
structure is shown in Figure 4. A tree consists of two branches
from the one base point. These can have different lengths, a
and b, and can be inclined at different angles, α (alpha) and
β (beta), from the vertical.

To complete the figure, we then plot the same structure at the
end of each branch on a reduced scale, using the direction of
that branch as the new “vertical.” This sort of tree is effectively
a fractal, with parts of it being repeated at an ever smaller scale.

The algorithm for this can be stated as:

If the length of the main branch is below a predefined
threshold (the terminating condition) then exit the proce-
dure without doing anything. Otherwise, given a point
and a direction (the “vertical”), plot the two branches of
the tree. The first is to the left of vertical by a specified
angle and with a given length. The second is to the right
of vertical by a, possibly, different angle and with a length
reduced from the first by a given amount. Then call the
procedure recursively for each new endpoint and its corre-
sponding angle, but with a reduced main branch length.

This process is captured in the code in Figure 5. We must
pass numerous parameters to it, being the starting point, the
current direction of the vertical (in degrees), the two angles
by which the branches are offset, the length of the main
branch and the amounts by which to reduce this to produce
the length of the secondary branch, and the length of the
main branch for the next level.

We must delve into some trigonometry to calculate the end-
points for the branches. The mod operator is used to ensure
that the angles being used remain in the range of 0 to 359,
preventing any possibility of overflow. Angles are defined in
degrees, since this is easier for us to use, but must be convert-
ed to radians before Object Pascal can use them. Radians are
used in all of Pascal’s trigonometric functions, and are calcu-
lated based on 180 degrees being equal to Pi radians. The
conversion is done using a predefined value to reduce the
amount of computation required in the plotting process.
Delphi Informant June 1996 29

Figure 5: The recursive procedure for plotting trees.

{ Recursive plotting routine }
procedure TForm1.DrawImage(CurPoint: TPoint;

CurAngle, LeftAngle,RightAngle: TAngle;
Length: Integer; Ratio, Shrink: Real);

var
Angle: Real;
NewPoint: TPoint;

begin
{ Terminating condition - line too short }
if (Length < MinLength) or Finish then

Exit;

{ Let something else have a go }
Application.ProcessMessages;

{ Calculate the new endpoint for the left side }
Angle :=

((CurAngle - LeftAngle) mod 360) * ConvertToRadians;
NewPoint.X := CurPoint.X + Round(Cos(Angle) * Length);
NewPoint.Y := CurPoint.Y + Round(Sin(Angle) * Length);
{ And draw a line to it }
TreeImage.Canvas.MoveTo(CurPoint.X, CurPoint.Y);
TreeImage.Canvas.LineTo(NewPoint.X, NewPoint.Y);
{ Then call procedure again with reduced size from

end of line }
DrawImage(NewPoint, (CurAngle - LeftAngle) mod 360,

LeftAngle, RightAngle, Round(Length * Shrink),
Ratio, Shrink);

{ Calculate the new endpoint for the right side }
Angle :=
((CurAngle + RightAngle) mod 360) * ConvertToRadians;

NewPoint.X :=
CurPoint.X + Round(Cos(Angle) * Length * Ratio);

NewPoint.Y :=
CurPoint.Y + Round(Sin(Angle) * Length * Ratio);

{ And draw a line to it }
TreeImage.Canvas.MoveTo(CurPoint.X, CurPoint.Y);
TreeImage.Canvas.LineTo(NewPoint.X, NewPoint.Y);
{ Then call procedure again with reduced size from end

of line }
DrawImage(NewPoint, (CurAngle + RightAngle) mod 360,

LeftAngle, RightAngle,
Round(Length * Ratio * Shrink), Ratio, Shrink);

end;

OP Tech

Figure 6:
A recursive
tree plotting
program.

Figure 7: The
first two steps
in building the
Von Koch
snowflake
curve.
The procedure contains some extra code to allow for addi-
tional processing. The first is a call to the ProcessMessages
method of the Application object. This allows Windows to
perform any other outstanding processing. The second is the
alternate terminating condition, being when the flag Finish is
set to True. This variable is defined outside the procedure and
can be used to halt the drawing process if it’s taking too long.
To do this in our case, the Draw button on the form changes
to a Cancel button once it has started the plotting process. A
second click on it sets Finish to True, which it can do because
of the call to ProcessMessages, and this causes the drawing pro-
cedure to terminate on its next cycle.

To see this procedure in action look in the TREES1.PAS unit
and the TREES.DPR project that accompany this article.
This program allows most of the parameters to the procedure
to be set interactively before drawing the resultant tree (see
Figure 6). The Symmetric check box disables the Right Angle

and L/R Ratio% controls, tying the first to Left Angle and set-
ting the second to 100 percent. This is merely a convenience
to allow easier plotting of symmetric trees.
Plotting a Fractal
For the third example of recursion we are drawing another
fractal shape, this time the Von Koch snowflake curve. It’s
defined as consisting of an equilateral triangle, each side of
which is divided into three equal parts, with the central part
being replaced by two sides of a smaller equilateral triangle
based on that part (see Figure 7). This structure is then
applied repeatedly to each of the smaller triangles so created.

So the recursive algorithm that we are using can be defined as
follows:

Given the two endpoints for this segment, determine its
length. If this falls below some threshold (the terminating
condition) then simply draw this segment on the screen.
Otherwise, compute the three additional points that
define the curve over this segment. These are the points
one and two thirds of the way along the line and the
midpoint at the top of the central equilateral triangle.
Then call the procedure recursively for each of these com-
ponent segments in turn.

To calculate the points along the segment is very simple for
the two actually on the line. The third point — the midpoint
— requires some trigonometry to determine its position.
Basically we find the angle of the line segment (always from
start to finish since this determines on which side the peak
appears) and subtract 30 degrees, which is the angle that the
midpoint makes to the original segment through the starting
point. Then using trigonometry, find the x and y offsets to
the point from the starting point.

The code for all of this is shown in Figure 8. Note that two
constants have been defined earlier to reduce the amount
Delphi Informant June 1996 30

{ Recursive fractal plotting routine }
procedure TForm1.DrawSegment(FromPoint, ToPoint: TPoint);
var

X, Y: LongInt;
Length, Angle: Real;
MidPoint, FirstThird, SecondThird: TPoint;

begin
if Finish then Exit;

{ Determine length of line segment }
X := ToPoint.X - FromPoint.X;
Y := ToPoint.Y - FromPoint.Y;
Length := Sqrt(Y * Y + X * X);

{ Terminating condition }
if Length < MinLength.Value then

begin { Draw the line segment }
FractalImage.Canvas.MoveTo(FromPoint.X, FromPoint.Y);
FractalImage.Canvas.LineTo(ToPoint.X, ToPoint.Y);
Exit;

end;

{ Allow something else to have a go }
Application.ProcessMessages;

{ Determine the angle of the line segment }
if X = 0 then

begin
if Y > 0 then

Angle := Pi / 2
else

Angle := - Pi / 2;
end

else
Angle := ArcTan(Y / X);

if X < 0 then
Angle := Angle - Pi;

{ Compute intermediate points on this line }
MidPoint.X := FromPoint.X +

Round(Length / Root3 * Cos(Angle - Degrees30));
MidPoint.Y := FromPoint.Y +

Round(Length / Root3 * Sin(Angle - Degrees30));
FirstThird.X := FromPoint.X + Round(X / 3);
FirstThird.Y := FromPoint.Y + Round(Y / 3);
SecondThird.X := FromPoint.X + Round(2 * X / 3);
SecondThird.Y := FromPoint.Y + Round(2 * Y / 3);

{ And recursively draw each segment }
DrawSegment(FromPoint, FirstThird);
DrawSegment(FirstThird, MidPoint);
DrawSegment(MidPoint, SecondThird);
DrawSegment(SecondThird, ToPoint);

end;

Figure 8: The recursive procedure for plotting the Von Koch
snowflake curve.

Figure 9: The recursive Von Koch snowflake plotting program.

OP Tech
of calculation required. These are Root3 which is the square
root of three and Degrees30 which is 30 degrees expressed
as radians. Also note that we are making four recursive calls
from this procedure, one for each component line segment.

This procedure can be found in the SNOWFLK1.PAS unit.
The sample project, SNOWFLAK.DPR, allows the maxi-
mum segment length to be set and uses this as the threshold
value when plotting the curve (see Figure 9). The form
should plot different figures for values of 5, 10, 30, and 90.
Note that some of the other values may produce slightly
incomplete curves because of the closeness of the segment
lengths to the threshold value. It also allows for the segments
to be plotted in the reverse direction, generating an inverted
Von Koch snowflake. Because the plotting routine may take
some time to complete, a call to the ProcessMessages method
of the Application object allows other Windows programs to
perform some processing of their own, and for this routine
to be canceled, similar to the tree plotting program above.

Binary Tree
The final example of recursion involves creating a sorted
binary tree object. This object maintains a group of other
objects in a specified order, with searching and processing
being on average faster than a straight array. A binary tree is
built up from nodes. Each node has a value and two point-
ers (hence binary) to those nodes that have values less than
this one and those that have values greater than this one.

Note that these pointers may be empty. The first node in the
tree is referred to as the root, and the tree is usually depicted as
growing down from the root, with node values increasing to
the right (see Figure 10). Those nodes at the bottom of the tree
with no descendants are referred to as leaf nodes. Note that the
root is the only means of access to the entire tree. All process-
ing must start from here.

As you can see, each node and its descendants form a sub-
tree within the main tree. This gives us the self-definition
required for recursion, with the leaf nodes or empty point-
ers being the terminating conditions. The processes that
we must be able to perform on a binary tree include
inserting a new value, removing an existing value, check-
ing whether a value is present, and processing all the
nodes in order.
Delphi Informant June 1996 31

OP Tech

{ Recursive procedure to insert an object into the tree }
procedure TBinaryTree.InsertInTree(obj: TBinaryTreeObject;

var ptr: PBinaryTreeNode);
begin

if ptr = nil then { Terminating condition - add }
begin

ptr := New(PBinaryTreeNode);
ptr^.NodeObject := obj;
ptr^.Left := nil;
ptr^.Right := nil;

end
{ Terminating condition - already there }
else if obj.IsEqualTo(ptr^.NodeObject) then

begin
ptr^.NodeObject.Free; { Free previous object }
ptr^.NodeObject := obj; { And assign new one }

end
{ Check in appropriate half of tree }
else if obj.IsLessThan(ptr^.NodeObject) then

InsertInTree(obj, ptr^.Left)
else

InsertInTree(obj, ptr^.Right);
end;

Figure 11: The recursive binary tree insertion procedure.
To imple-
ment this
in Delphi
we can
make use of
the class
structure
and define
a binary
tree class,
TBinaryTree,
and its asso-
ciated methods. It’s derived from TObject, since it requires
only the very basics of a class definition. It will have a sin-
gle private variable, that points to the root of the tree, and
several public functions and procedures to allow us to
manipulate the tree. The tree’s nodes are defined as a
record, TBinaryTreeNode, each of which holds an object
and two pointers to other nodes:

{ The binary tree nodes }
PBinaryTreeNode = ^TBinaryTreeNode;
TBinaryTreeNode = record

NodeObject: TBinaryTreeObject;
Left, Right: PBinaryTreeNode;

end;

To ensure that the objects to be stored in the binary tree can be
properly manipulated by it, we create an abstract base class called
TBinaryTreeObject that defines the minimum requirements for
such objects. Within it are declared the comparison functions
necessary to position an object in the tree, IsEqualTo and
IsLessThan, and a procedure to act upon an object when process-
ing all the nodes in order, Process. All these are declared as being
virtual and abstract. The former means that they can be overrid-
den in a class derived from this one, while the latter means that
they must be overridden since they are not defined here.

Note that a reference to an object is really a pointer to that
object and that it is allocated space somewhere in memory.
This memory should be released for other uses when we have
finished with an object. Since the tree holds objects of a class
derived from TBinaryTreeObject of which we have no knowl-
edge, we cannot create new instances of these objects to hold
in the tree within TBinaryTree itself. Thus, we store the
pointers to objects that were created outside the binary tree
class and must take on the responsibility of releasing their
resources once we are finished.

Grafting
To insert a new value into the tree we must start at the root
(initially empty) and traverse the structure to see whether the
value is already there. This is done by comparing the value
with that of the current node. If they are equal then the value
is already in the tree and nothing further needs to be done (a
terminating condition).

If they are not equal then we need to determine which of the
node’s sub-trees to search to find it. If the value is less than
the current node then we look in the left sub-tree, otherwise

Figure 10: A sorted binary tree sample.
we check the right. If we encounter an empty pointer in this
direction then the value is obviously not in the tree and we
must add it at this point, since this is where we should have
found it (see Figure 11). This procedure is called by the pub-
licly available Insert method, starting at the root.

The notation in this code includes references to pointers. Type
PBinaryTreeNode is a pointer to a TBinaryTreeNode record. To
refer to the contents of that record we use the pointer symbol
(^) to access the object being pointed to. Thus ptr is a
pointer to a node, while ptr^ is the node record itself (a
process known as de-referencing). References to objects within
Object Pascal are also pointers, but this is hidden by Object
Pascal that automatically de-references them when necessary.

Since we only have a pointer declared for our use, we must
use the New function to allocate space dynamically when we
want to create a new instance of the record. Conversely, when
we are finished with an object being pointed to, we must
release its resources using the Dispose procedure.

The var directive in the parameter list for the procedure means
that within its code we are working with the actual item passed
in (in this case a pointer). Any changes to the parameter also
update the original in the calling environment. Normally we
would only have access to a copy of the item and would be
unable to affect the original. We need to use the original point-
er in our case to correctly position the new node in the tree.

In our implementation of the tree we are also replacing a
node if it already exists in the tree. This allows for any depen-
dent values of the object to be updated. Remember that we
must free the original object with that value since we have
taken over responsibility for it and we no longer require it.

Pruning
Inserting an object into the tree is fairly straightforward, but
removing objects is much more complicated. As before, we
Delphi Informant June 1996 32

OP Tech
search the tree for the object to be removed, starting at the
root, and recursively processing the left or right sub-tree as
required. If we reach an empty pointer then we can stop since
the object is not in the tree anyway.

Once the required node has been located it must be removed.
This will involve restructuring the tree below this node since
we need to maintain the order inherent in the tree. If this
node is a leaf node then all we need to do is break the link
from the previous node in the tree to this one. If the node
has only one descendant then we can safely change the link
from the previous node to point to this sub-tree.

If the node has two descendants then things become more
involved since we cannot move both up to the previous
level. We do not want to move large numbers of nodes
around to get everything in the right order again. The solu-
tion turns out to be quite simple: find the largest node in
the left sub-tree, or the smallest node in the right sub-tree,
and replace the current node with that one.

This node is guaranteed to be able to replace the node
being removed by the definition of the tree structure, with-
{ Recursive function to remove an object from the tree
and return a flag showing whether it was there }

function TBinaryTree.RemoveFromTree(obj: TBinaryTreeObject;
var ptr: PBinaryTreeNode): Boolean;

begin
if ptr = nil then { Terminating condition - not there }

Result := False
{ Terminating condition - remove }
else if obj.IsEqualTo(ptr^.NodeObject) then

begin
ReorganiseInTree(ptr);
Result := True;

end
{ Check in appropriate half of tree }
else if obj.IsLessThan(ptr^.NodeObject) then

Result := RemoveFromTree(obj, ptr^.Left)
else

Result := RemoveFromTree(obj, ptr^.Right);
end;

{ Procedure to reorganise the tree from this
point - deleting current node }

procedure TBinaryTree.ReorganiseInTree(
var ptr: PBinaryTreeNode);

var
ptrRemove: PBinaryTreeNode;

{ Recursive procedure to replace with minimum
in right sub-tree }

procedure ReplaceWithMin(var ptrRep: PBinaryTreeNode);
begin

{ Terminating condition - found minimum }
if ptrRep^.Left = nil then

begin
ptr := ptrRep; { Adjust pointers }
ptrRep := ptrRep^.Right;
ptr^.Left := ptrRemove^.Left;
ptr^.Right := ptrRemove^.Right;

end
else { Recursive call to next level }

ReplaceWithMin(ptrRep^.Left);
end;

Figure 12: Recursive binary tree deletion function and procedures.
out further changes. If we always used nodes from one sub-
tree and the rate of deletions is relatively high, then the tree
can degenerate into a linked list, which removes the advan-
tages of the tree structure. To overcome this we randomly
pick one of the sub-trees to process for each deletion.

In all cases where we found the object, its resources must
be released and the node that contained it destroyed. The
code for all of this is shown in Figure 12. The recursive
searching function, RemoveFromTree, is initially called by
the publicly available method Remove with the root as the
starting point. Once the object is found, control is passed
to the ReorganiseInTree procedure. This is separated from
the searching code to make both easier to follow. It then
determines whether or not the node has less than two
descendants and invokes the recursive sub-tree replacement
procedures as required.

Note that the replacement procedures are declared within
the ReorganiseInTree procedure. This gives them access to
the variables in that procedure, which we do need. A flag is
passed back to the user to indicate whether or not the
record existed in the tree.
Delphi Informant June 1996 33

{ Recursive procedure to replace with maximum
in left sub-tree }
procedure ReplaceWithMax(var ptrRep: PBinaryTreeNode);
begin

{ Terminating condition - found maximum }
if ptrRep^.Right = nil then

begin
ptr := ptrRep; { Adjust pointers }

ptrRep := ptrRep^.Left;

ptr^.Left := ptrRemove^.Left;

ptr^.Right := ptrRemove^.Right;

end

else { Recursive call to next level }

ReplaceWithMax(ptrRep^.Right);
end;

begin
{ Remember current node for later disposal }
ptrRemove := ptr;
if (ptr^.Left = nil) and (ptr^.Right = nil) then

{ Terminating condition - no more branches }
ptr := nil

{ Terminating condition - move right tree up }
else if ptr^.Left = nil then

ptr := ptr^.Right
{ Terminating condition - move left tree up }
else if ptr^.Right = nil then

ptr := ptr^.Left
else

{ Replace current object with min in right branch
or max in left branch - this is done randomly
to reduce distortions to the tree structure }

begin
if Random(2) = 0 then

ReplaceWithMin(ptr^.Right)
else

ReplaceWithMax(ptr^.Left);
end;

{ Free object at node to be deleted }
ptrRemove^.NodeObject.Free;
{ And destroy the node }
Dispose(ptrRemove);

end;

{ Recursive procedure for processing all objects in tree
Can be done in ascending or descending order using flag }

procedure TBinaryTree.ProcessInTree(descending: Boolean;
ptr: PBinaryTreeNode);

begin
if ptr = nil then { Terminating condition }

Exit;
{ Process appropriate half of tree before this object }
if descending then

ProcessInTree(descending, ptr^.Right)
else

ProcessInTree(descending, ptr^.Left);
{ Call process method of the object }
ptr^.NodeObject.Process;
{ Process appropriate half of tree after this object }
if descending then

ProcessInTree(descending, ptr^.Left)
else

ProcessInTree(descending, ptr^.Right);
end;

Figure 13 (Top):
Recursive binary
tree processing in
order.
Figure 14 (Left):
The example form
for our binary
tree example.

OP Tech

Keith Wood is an analyst/programmer with CSC Australia, based in
Canberra. He started using Borland’s products with Turbo Pascal on
a CP/M machine. You can reach him via e-mail at
Easy Processing
Processing the entire tree in order is very simple with a recursive
algorithm. At each node, simply process all the nodes in the left
sub-tree (all less than this one), then process this node and
finally those in the right sub-tree (all greater than this one).

When we reach an empty pointer we can halt the process. To
process all the nodes in reverse order, we just reverse the algo-
rithm: processing right, then the current one, then left. This
is shown in Figure 13. Again it’s called by a public method,
ProcessAll, starting at the root. Remember that the Process
method of the objects in the tree must be defined in the class
derived from the base binary tree object class for this to work.

The binary tree class also defines some other functions:
whether an object exists in the tree, and returning the mini-
mum and maximum values in the tree, but these are left for
the reader to work through.

To make use of the binary tree class we must first derive a binary
tree object to be stored in it. In the example program we derive a
class that just contains an integer value, TBinaryTreeInteger,
although it could contain anything that we wanted. We must
then override the three abstract methods with real definitions.
For example, the IsEqualTo function is defined as:

{ Equality for a binary tree integer - values equal? }
function TBinaryTreeInteger.IsEqualTo(

other: TBinaryTreeObject): Boolean;
begin

Result := (Value = (other as TBinaryTreeInteger).Value);
end;

Note that the parameter must be a TBinaryTreeObject, since
this is what was defined in the base class, but that it can be
cast as our derived class to gain access to its contents. The
Process method will simply display the contents of each node.

The example form itself in the BNRYTREE.DPR project
(see Figure 14) allows us to manipulate the binary tree. The
value to be used is entered in the spin edit control, and one
of the command buttons is pressed to initiate an action, the
results of which are displayed in the memo component.

For each action, except Print Tree, a new TBinaryTreeInteger
object is created and passed to the binary tree for processing. If
the binary tree does not incorporate it into itself, then we must
free that object after it has been used. In the case of finds with-
in the tree, we are returned a pointer to the actual object in the
tree, if it exists. This object must not be freed since the tree still
has a reference to it (the original object that we created was
freed by the tree before it returned the found one). The binary
tree class is defined separately in the BINTREE.PAS file so
that it can easily be incorporated into other projects.

Conclusion
Recursion involves defining a problem in terms of itself.
Each time a smaller part of the problem is worked on, until
we reach a position where we can easily compute the answer.
The examples presented in this article show how recursion can
be used to implement various algorithms within Object Pascal.
It’s a powerful tool when applied to the right sort of program-
ming problem, and frequently produces concise and elegant
algorithms as a solution. Fortunately Object Pascal makes it
easy to use this tool, without which we might need to perform
some quite complex steps to achieve the same results.

Some other examples where recursion can be of great use are in
most problems involving fractals, in backtracking algorithms,
where a path is followed until it proves fruitless before backing
up and trying another path, in traversing tree structures (not
just binary ones), and any other algorithm that is defined in
terms of itself. In fact, have a look under recursive loop in the
Object Pascal Language Guide. If you want to practice using
recursion, try to program a recursive function that reverses the
order of characters in a string. Remember to define the prob-
lem in terms of itself and then implement this in the code.

Now if I can just get you back to the start of this article for
another look ... ∆

The demonstration projects referenced in this article are available
on the Delphi Informant Works CD located in INFORM\-
JUNE\96\DI9606KW.
Delphi Informant June 1996 34

kwood@nla.gov.au or by phone (Australia) 6 291 8070.

Dynamic Delphi
Delphi 1 / Object Pascal

By Andrew J. Wozniewicz

DLLs: Part IV
Wrapping Up Dynamic Link Libraries in Delphi
In this series, we’ve discovered some of Delphi’s formidable capabilities
to create and use dynamic link libraries (DLLs). In this final installment,

we’ll cover dynamically loading a DLL, releasing a DLL, using dynamically
loaded DLLs, and accessing data in a library. The end of the article features
an overview for the use of DLLs for your reference.
Dynamically Loading a DLL —
LoadLibrary
The keys to explicitly loading a DLL are a
pair of standard Windows API functions that
are always used in conjunction: LoadLibrary
and GetProcAddress. First, you must issue a
call to LoadLibrary, which is declared in the
WinProcs unit, as follows:

function LoadLibrary(
LibFileName: PChar): THandle;

You can use this function by passing it a
string value, for example:

var
ALibrary: THandle;

begin
...
ALibrary := LoadLibrary('dllfirst.dll');
...

end

This example, however, hides a number of dif-
ficulties and issues that arise when you attempt
to use the LoadLibrary function. The first issue
is making sure the WinProcs unit is in the uses
clause of the unit or module in which you
intend to use LoadLibrary. The second issue is
that the function takes a single parameter,
LibFileName, which is of type PChar.

So far, you have avoided dealing with the non-
Pascal string types, known as null-terminated
strings. The standard string type was sufficient
for most purposes. Note, however, that strings
are limited to 255 characters, while null-termi-
nated strings are not and may run up to 64KB
characters. A PChar is essentially a null-termi-
nated string (the issue of pointers deliberately
is avoided here) for all intents and purposes.

Null-terminated strings are native to the
Windows API, but Delphi shields you from
them most of the time. When you need to
make a direct call to an API subroutine,
however, there is no “protection” — you are
dealing with Windows directly and must use
the data types that Windows expects.

A null-terminated string is an array of charac-
ters. Unlike Pascal strings, which have the
length byte at the beginning, null-terminated
strings do not explicitly store their lengths, but
instead mark their ends with the null-character
(ASCII 0) — hence, their name. A null-termi-
nated string can be much longer than a Pascal
string, up to the maximum limit of 64KB.

The LoadLibrary function expects you to
pass the file name of the library as a null-ter-
minated string. The example in this section
looks deceptively simple because it hides the
fact that the string passed as the actual para-
meter is a null-terminated string:

'dllfirst.dll'

This line is treated by the compiler as the
native Pascal string or a null-terminated string,
depending on the context. In this case, because
Delphi Informant June 1996 35

Dynamic Delphi

uses
..., WinTypes, WinProcs, SysUtils;

var
AFileName: string;
ABuffer: array[0..255] of Char;
ALibrary: THandle;

begin
...
AFileName := 'dllfirst.dll';
...
StrPCopy(ABuffer,AFileName);
...
ALibrary := LoadLibrary(ABuffer);
...
if ALibrary <= HINSTANCE_ERROR then

{ There was a problem! }
else

{ It is safe to use the library! }
...

end;

Figure 1: Explicitly loading a DLL via a LoadLibrary call.
the function expects a null-terminated string, the compiler
ensures that the literal constant is treated as such. This is possible
only because the call uses a literal constant. Otherwise, without
the additional information from the context in which the literal
constant is used, you would not be able to tell whether 'dll-
first.dll' refers to a Pascal string or a null-terminated string.
Both look exactly the same when written as true constants.

Typically, however, you would not use literal constants for the
file name with the LoadLibrary function. After all, you can
import the library of interest implicitly by using static constants.
The advantage of using LoadLibrary is the ability to specify a
variable as its parameter, thereby filling the actual value of the
string at run time. This is where the incompatibility problem
between Pascal strings and null-terminated Windows strings
creeps in. The compiler does not accept a Pascal string variable
in place of the actual parameter for the LoadLibrary function.

Note that you must provide the complete file name in a call
to the LoadLibrary function. At a minimum, this involves
providing the file name and the extension. Because file name
extensions other than the default .DLL are possible, no
default extension is assumed. You have to explicitly supply
the extension, if any, even if it is DLL.

Fortunately, you don’t have to worry too much about null-
terminated strings to make the LoadLibrary call. Just remem-
ber that it’s not a straightforward Pascal string. Typically, you
must translate between a String variable in which you likely
will have the file name of the library stored, and what the
LoadLibrary function requires.

Calling LoadLibrary
Without getting into too much detail, Figure 1 illustrates the
steps to issue the LoadLibrary call. This code shows how to
use the LoadLibrary function in a generic situation, when the
file name of the library to use for the call is stored as a Pascal
string, as it typically would be.

First, the uses clause ensures that the required subroutines are
visible. You need WinProcs to access the LoadLibrary function,
and SysUtils to access StrPCopy (the conversion routine that
translates between a Pascal string and a null-terminated string).
You also need WinTypes to use the HINSTANCE_ERROR
constant defined there when checking for the result of the
LoadLibrary call.

Then, the necessary variables are declared:

var
AFileName: string;
ABuffer: array[0..255] of Char;
ALibrary: THandle;

AFileName is the String variable in which you store the file name
originally. Here, for simplicity, the AFileName variable gets its
value from a straightforward constant assignment. However, this
can be replaced by a more elaborate scheme, such as getting the
value from a user, reading it from an .INI file, and so on.
After you have the name of the library file to load, you can
proceed with the conversion to a null-terminated string. The
ABuffer variable serves as the storage for the file name string
after the conversion occurs. The StrPCopy subroutine con-
verts between a Pascal string and a null-terminated string.
The first parameter to StrPCopy is the destination buffer
where the null-terminated equivalent will be stored. The sec-
ond parameter is the Pascal string you want to convert.

After the conversion, you are ready to call LoadLibrary. The
return value of this function is assigned to the variable
ALibrary, declared as a THandle. (We’ll discuss this more
later.) In a nutshell, it’s a “token” through which you can refer
to the library after it has been loaded. You will need to check
the value of the returned token, however, because a value
below the predefined HINSTANCE_ERROR indicates an
error condition. The last three lines of code determine if the
call to LoadLibrary was successful.

The result of the LoadLibrary function call is a value of type
THandle. This value is a token, or an “abstract value,” that
enables you to identify the library to Windows after it has
been loaded successfully. It’s important to realize that, as long
as the LoadLibrary call was successful, the numeric value of
the handle it returns is of no importance to you directly. You
simply supply whatever value LoadLibrary returned to other
functions, such as GetProcAddress, that require it.

The only time you need to actually look at the value
returned by LoadLibrary is directly after the call, because
the return value may indicate an error condition. You can
check whether a call to LoadLibrary was successful by com-
paring it with a predefined constant declared in the
WinTypes unit: HINSTANCE_ERROR. If LoadLibrary
returns a value that is less than or equal to this predefined
constant, the call succeeded in actually loading the library,
and it’s not safe to use any of the functions that need the
library to be loaded, such as GetProcAddress.
Delphi Informant June 1996 36

Dynamic Delphi

uses
WinTypes, WinProcs;

var
TheLib: THandle;
FillStr: function (C : Char; N : Byte): string;
UpCaseFirstStr: function (const S: string): string;
LTrimStr: function (const S: string): string;
RTrimStr: function (const S: string): string;
StripStr: function (const S: string): string;

begin
...
{ Initialize the variables }
@FillStr := nil;
@UpCaseFirstStr := nil;
@LTrimStr := nil;
@RTrimStr := nil;
@StripStr := nil;
...
{ Load the library dynamically }
TheLib := LoadLibrary('DLLFIRST.DLL');
if TheLib > HINSTANCE_ERROR then try

...
{ Retrieve the subroutine addresses }
if TheLib > HINSTANCE_ERROR then begin

@FillStr := GetProcAddress(TheLib,'FillStr');
@UpCaseFirstStr :=

GetProcAddress(TheLib,'UpCaseFirstStr');
@LTrimStr := GetProcAddress(TheLib,'LTrimStr');
@RTrimStr := GetProcAddress(TheLib,'RTrimStr');
@StripStr := GetProcAddress(TheLib,'StripStr');
end;

...
{ Use routines here, almost same as before. e.g.: }
if Assigned(LTrimStr) then

S := LTrimStr(' This is fun! ');
{ S now equals 'This is fun! ' }

S := StripStr(' Teach Yourself Delphi Now! ');
{ If StripStr = nil, an exception occurs and control

jumps to the finally block; if no exception occurs,
S now equals 'TeachYourselfDelphiNow!' }

...
finally
{ Release the library once you are done }
FreeLibrary(TheLib);

end;
...

end.

Figure 2: Dynamically loading the sample DLLFirst library.
A call to LoadLibrary does not necessarily result in the library
being loaded from disk. If the library is already loaded (i.e.
it’s already being used by another application or by another
instance of the same application), the DLL’s “usage counter”
maintained by Windows is incremented. Only one copy of
the library itself resides in memory at any time. This, after
all, is the reason for having DLLs: to be able to share code.

Releasing a DLL
Assuming that the call to LoadLibrary was successful, you
need to ensure that you free the library once you no longer
need it. This is again different from the situation of implicitly
importing the DLL, where Windows itself takes the responsi-
bility for both loading and unloading the library when neces-
sary. Once you have taken over the responsibility to explicitly
load the library, you also must ensure that it’s possible for
Windows to unload it when it’s no longer needed.

To tell Windows that your application is no longer interested
in the library, you must issue a call to the standard Windows
FreeLibrary procedure. It’s declared inside WinProcs as follows:

procedure FreeLibrary(LibModule: THandle);

As you can see, FreeLibrary takes a single parameter,
LibModule, of type THandle, that identifies the library to be
released. This is the same “token” handle that LoadLibrary
returns. In fact, a call to FreeLibrary does not necessarily
result in the library being unloaded immediately. It all
depends on who else is using the same library at the time. If
there are other applications also using the library in ques-
tion, the call to FreeLibrary merely decrements a usage
counter maintained by Windows. Only after the usage
counter reaches zero is the library unloaded.

It’s important to remember that if you used LoadLibrary to
access a DLL, you must use a corresponding FreeLibrary to
release it. Otherwise the usage counter is never decrement-
ed to zero and the library remains loaded even if it’s no
longer being used. When your program terminates, nor-
mally or abnormally, it’s your responsibility to issue the
FreeLibrary call.

Using Dynamically Loaded DLLs
Assuming the call to LoadLibrary was successful, you can take
steps to retrieve the addresses of the subroutines you want to
use from the library. The most convenient way of doing this is
by declaring a subroutine type variable, the value of which you
fill at run time with the address retrieved from a DLL via a call
to GetProcAddress (you’ll see an illustration of this shortly).

GetProcAddress is declared in WinProcs as follows:

function GetProcAddress(Module: THandle;
ProcName: PChar): TFarProc;

This declaration takes two parameters. The first, Module, is the
library handle previously returned from the call to LoadLibrary.
The second parameter, ProcName, is a null-terminated string
that contains the name of the subroutine for which you want
to obtain the address. (As before, you may need to translate the
Pascal string where you stored the procedure name into a null-
terminated string required by the GetProcAddress call.)

Note that Windows does not give you any way of retrieving
any information about the parameter lists and return types of
the DLL subroutines you are accessing. In other words, you
must know the signature, or the declaration of the subroutine
you want to use beforehand. You can dynamically retrieve the
run-time address of the subroutine in a DLL, but not run-
time type information about it.

Loading and Calling
Now take a look at how you would go about dynamically load-
ing and calling subroutines in the DLLFirst library we’ve devel-
oped in this article series. Figure 2 provides a template for using
any DLL. Simply substitute the definitions and names specific to
DLLFirst in the listing with ones pertaining to the specific
library you want to access.
Delphi Informant June 1996 37

Dynamic Delphi
The code in Figure 2 gives you an idea of what’s involved
when using an explicitly loaded DLL. The example DLL-
FIRST.DLL is used here as an illustration of the steps needed.

The key to successfully using the subroutines in the library
is to provide a set of variables that can hold the values of
run-time addresses of the library subroutines. In the var sec-
tion, a set of variables is declared, conveniently named the
same as the function addresses of which they will be storing.

The library handle, TheLib, is retrieved via a call to
LoadLibrary. A try..finally exception-handling block is set
up to protect the “working” code from the possibility that
the code executed within the try block may have failed. If
an attempt to call a subroutine from the library within the
try block results in a failure, an exception is thrown. The
finally block is guaranteed to execute the FreeLibrary call,
releasing the resources taken by the library.

In other words, after the initial determination that the
library call was successful is made by the if statement, the
finally clause of the try..finally block ensures that the library
is unloaded properly, even if an exception occurs during the
execution of the statements inside the try part.

Assuming that the LoadLibrary operation was successful, the
actual run-time addresses of the subroutines imported from
the DLLFirst library module are retrieved.

The @ operator in front of the variable names is meant to
deliberately circumvent the strong type-checking mechanism
of Object Pascal and, for a short moment, to treat the proce-
dural variables as if they are pointer variables (variables stor-
ing memory addresses of an unspecified type). Otherwise the
compiler would complain about the incompatibility between
the two sides of these assignment statements. Observe that
GetProcAddress returns a THandle type, while the left-hand
side variables are declared as function-typed variables.

The subroutine variables, after the address values are assigned
to them, can be used to call the appropriate subroutines. For
example, the following line of code appears exactly as if a call
to a normal subroutine is being made:

S := LTrimStr(' This is fun! ');

The function LTrimStr is being called and returns a value as
before. The interesting point here is that LTrimStr is not a func-
tion per se, but a reference to a functional variable, the value of
which was determined at run time. The difference is that you
must check the variable’s value for validity, because unlike stati-
cally linked or implicitly imported subroutine addresses, the
subroutine’s address may not be available. The determination as
to whether it’s safe to make the call is done with this code:

if Assigned(LTrimStr) then

This if statement is an example of the traditional approach to
error-checking. A run-time error is prevented by making sure
that the functional variable contains a valid address.
A different approach to error-checking is taken with this
statement:

S := StripStr(' Teach Yourself Delphi Now! ');

The new style of programming makes use of the exception-
handling mechanism built into Delphi. Remember that the
try..finally block you set up earlier is in effect here:

S := StripStr(' Teach Yourself Delphi Now! ');

If the call to StripStr is unsuccessful, such as when the value
of StripStr is nil, a General Protection Fault (GPF) exception
occurs. Instead of performing any useful action, the control
of execution immediately jumps to the finally block. The
finally block traps the exception and, in this case, makes sure
that the library is properly unloaded:

finally
FreeLibrary(TheLib);

end;

After you are done using the dynamic library that you have
loaded explicitly, be sure to release it with a call to
FreeLibrary. The code in Figure 2 ensures that the library is
eventually unloaded by making a call to FreeLibrary:

FreeLibrary(TheLib);

Before the call is made, however, the code checks if the
library has been successfully loaded in the first place.

The remainder of our article points out another important
issue that makes using DLLs different from using regular
units: accessing data inside the library.

Accessing Data in a Library
An important point when you are considering implementing
DLLs is that there’s no way of directly exporting data from
them. Unlike in the case of a simple, statically linked unit,
where a variable declared in the interface section is potential-
ly visible to, and accessible from, any other unit or Pascal
module in a project, variables declared inside a library remain
“external” and private to that library. The only interface avail-
able to the users of the library is the subroutine interface:
procedures and functions.

You are free to declare global variables inside a library mod-
ule, and declaring them is just as easy as doing so in a pro-
gram module. However, the variables you declare inside a
DLL are private to that DLL. You must provide a procedural
interface to allow the applications using the library to access
the variable (or variables) declared inside it when needed.

Warning! Always remember DLLs are shared resources.
Global variables in a DLL are shared across all clients of
the DLL. If one client application using the DLL changes
its value through a procedural interface to the DLL, all
other clients will also see the new, changed value. This may
Delphi Informant June 1996 38

library ExtStr;
var

AString: string;

function GetValue: string; export;
begin

Result := AString;
end;

procedure SetValue(AValue: string); export;
begin

AString := AValue;
end;

exports
GetValue index 11,
SetValue index 12;

begin
end.

Figure 3: Exporting a string variable from a DLL via a procedural
interface.

Andrew J. Wozniewicz is president and founder of Optimax Development
Corporation (http: //www.webcom.com/~optimax), a Chicago-based consultan-
cy specializing in Delphi and Windows custom application development, object-
oriented analysis, and design. He has been a consultant since 1987, developing
primarily in Pascal, C, and C++. A speaker at international conferences, and an
early and vocal advocate of component-based development, he has contributed
articles to major computer industry publications. Andrew can be contacted on
CompuServe at 75020,3617 and on the Internet at optimax@optidevl.com.

Dynamic Delphi
be useful sometimes, but often is unwanted, unexpected,
and may be disastrous. Writing multi-user servers as DLLs
is a tricky issue that is beyond the scope of this series.

The library presented in Figure 3 indirectly exports a string
variable, AString, by providing two access subroutines:
GetValue and SetValue. The code accomplishes the goal of
exporting a data element from a library module. The data
element “exported” by the DLL, AString, is declared early.

The AString variable is not visible outside the module, however.
To enable applications using the library to obtain and change
the value of the variable, two access subroutines are defined:

The GetValue function, to retrieve the current value of
the variable.
The SetValue procedure, to change the value of the variable.

These subroutines actually are exported via an exports
clause, and the client applications can operate effectively on
the value of the variable without “seeing” the variable direct-
ly. This is similar to the concept of access methods for a class
property. In both cases, the access subroutines shield the
using code from directly manipulating the value, and may
introduce side-effects, as well as validation and checking.

Conclusion
This series has discussed the following issues:

Like application modules, DLLs are executable modules,
but they are not directly executable.
DLLs make it possible for many running applications, or
many instances of the same application, to share code and
binary resources.
DLLs are created in Delphi by replacing the keyword
program with the keyword library in the main Delphi
project file, and making some additional changes to the
standard project file generated by Delphi.
The export directive makes a subroutine exportable —
capable of being exported by a DLL and used by an
application external to that DLL.
The exports clause lists the subroutines actually exported
from a DLL. All the exported subroutines must have
been declared with the export directive.
The most convenient way of accessing the subroutines
inside a DLL is by creating an implicit import unit,
declaring the headers of the subroutines, and binding
them to the corresponding routines inside a DLL via the
external directive.
There are many ways of binding the subroutines declared
as external to the actual subroutines implemented inside a
DLL. The subroutines can be bound by their declared or
assumed name, or by an ordinal number.
A LoadLibrary standard API function can be used to
provide a greater degree of control over when a partic-
ular DLL is loaded. There must be a matching call to
FreeLibrary for each invocation of the LoadLibrary
function.
Before you can use the subroutines inside a library explic-
itly loaded with a call to LoadLibrary, you must retrieve
their addresses via a call to GetProcAddress.
You can store the values retrieved by GetProcAddress in
procedural-type variables, which can later be used to call
the subroutines.
You cannot export data elements directly from a DLL. To
make data available to applications using a DLL, you
must provide a procedural interface, consisting of a
GetXXXX function and a SetXXXX procedure, to retrieve
and change the value of a particular variable in question.

This discussion of DLLs has only scratched the surface of the
issues involved. Be sure to consult other references when you
are considering making heavy use of dynamic linking. The
examples given here are just a foundation for knowledge.

Now go build some DLLs! ∆

This article was adapted from material for Teach Yourself
Delphi in 21 Days [SAMS, 1995], by Andrew Wozniewicz
and Namir Shammas.

The example DLLFIRST.DLL and its associated files are
available on the Delphi Informant Works CD located in
INFORM \JUNE \96 \DI9606AW.
Delphi Informant June 1996 39

New & Used
Delphi 1 Utility

By Robert Vivrette

Memory Monitor for Delphi
Plug Your Delphi Application Resource Leaks
P rogramming for an environment such as Microsoft Windows is full of
pitfalls. Fortunately, many of the development languages available

today (such as Delphi) take great strides to protect us from these hazards.
However, a programmer can still get into trouble fairly easily.
One significant problem is resource leak-
age. All of you who have worked with
Windows 3.x or Windows for Work-
groups are familiar with the problem. A
program uses pieces of memory from two
small supplies called the GDI and USER
heaps. Each of these is limited to 64KB,
so when a program takes some of this
memory and doesn’t give it back, less is
available for the next application.
Eventually, enough badly behaved pro-
grams bring Windows to its knees, forc-
ing the user to restart the machine.

This has given rise to a multitude of
resource monitoring programs that display
the state of each of these memory heaps.
Fortunately, Windows 95 takes great
strides to alleviate much of the basic
restrictions on the use of these memory
segments. A determined, ill-behaved pro-
gram, however, can still wreak havoc.

As useful as these resource monitoring pro-
grams are, they are — after all — merely
monitors. They do nothing to help uncover
the programming flaw that generated the
leak in the first place. In addition, they
typically only monitor the relatively small
GDI and USER heaps. Leaks relating to
the global memory pool are much more
difficult to track.

What would you think of an oil compa-
ny that expended huge amounts of
money to create a device that measured
the amount of oil that leaked from
improperly designed hull plates of a
super-tanker? Waste of money, right? The
oil company should spend that money
designing better hull plates so the oil
wouldn’t leak in the first place.

Resource monitoring gauges are much
like this. They track the amount of mem-
ory a program is leaking after it has
already been shipped to thousands, or
tens of thousands, of users. It does little
to help a programmer fix the problem,
but rather indicates to the user when the
machine is about to crash.
Delphi Informant June 1996 40

New & Used

Figure 2: A simple “leaky”
demonstration program.
Enter MemMonD
MemMonD (for Memory Monitor for Delphi) is not a
typical memory monitoring tool. Rather it is a tool used
by Delphi programmers to track down leaks before the
application leaves the shop. It allows programmers to see
the lines of source code that are causing memory leaks so
they can modify the code and correct the problem.

Using MemMonD is about as simple as it gets. Before
testing, the application needs to be compiled with the
Map file: Detailed radio button selected on the Linker
page of the Project Options dialog box (see Figure 1).
This setting tells the Delphi compiler to generate a map
file (*.MAP) during the linking stage that shows (among
other things) memory addresses for the various pieces of
code in the program.
Figure 1: Delphi’s Project Options dialog box.

Figure 3: MemMonD at work, displaying
each unit’s address.
Then it’s a simple matter of firing up MemMonD, selecting
the application to test, and running that application. Your
program will run normally with MemMonD sitting in the
background watching what your program is doing. (Its main
window even has shifting eyes to indicate that it’s at work.)

Exercise all portions of your test program, then shut it
down. MemMonD will prepare a report that contains infor-
mation about global memory and stack consumption, and a
list of pointers that were never freed — each with a reference
to the line of source code where the pointer was allocated.

It will also catch one of the more difficult bugs to track
down in a Delphi program — namely, the use of the
FreeMem procedure with a different size parameter from
that used when the GetMem or AllocMem procedure was
used to reserve the memory.

To demonstrate MemMonD’s principal capabilities, let’s
look at a simple example.

An Example
The example application performs one simple task — and
performs it incorrectly. It presents a form with a single
button (see Figure 2). When the button is clicked, a single
TBitmap component is instantiated in memory:

procedure TForm1.BitBtn1Click(Sender: TObject);
begin

Bitmap1 := TBitmap.Create;
Label1.Caption := 'Bitmap Created';

end;
Most of you will recognize the
problem here. Aside from the
fact that the program does
nothing with the TBitmap, it
also doesn’t release it from
memory. The object was
instantiated, telling Delphi to
create various internal struc-
tures for the TBitmap, yet it is
never removed from memory. Delphi has no way of flag-
ging this type of logic error. My use of the TBitmap is syn-
tactically correct — as far as it goes.
To see how
MemMonD
helps in this sit-
uation, let’s run
this sample
program while
MemMonD is
watching. After
launching
MemMonD
and selecting
the program to
monitor, you’ll
see something
similar to
Figure 3. The

list box shows all the units that have been compiled
into the example project. (Note that the user has com-
plete control over what memory issues will be reported.
This is just one “mode.”)

After running the sample program, clicking on the but-
ton (and creating the TBitmap), and then quitting,
MemMonD will generate a report that uncovers our
problem (Figure 4). As you can see, MemMonD noticed
there were 2 pointers to memory, accessing a total of 44
bytes, that were not released. It also indicates that these
pointers were allocated in the UNIT1.PAS file on line
29. If we go back to the source for our demonstration
application, we see the following on line 29:

Bitmap1 := TBitmap.Create;

In this case MemMonD has spotted the culprit as being the
creation of a bitmap that was never released. To remedy this
problem, the programmer would then need to include a:

Bitmap1.Free;
Delphi Informant June 1996 41

New & Used

MemMonD detects and reports resource
leaks in Delphi applications. It’s also
capable of generating profile statistics
for the most time-consuming routines,
the most stack-consuming, or the most
frequently-called routines. The regis-
tered version features stack check hook-
ing and block overwrite options.
MemMonD should be in every Delphi
developer’s tool kit.

Price: Single-user license US$49;
unlimited site-license US$147. A share-
ware version is available as MEMM-
ND.ZIP in the “Debugger/Tools” library
section of Borland’s Delphi
CompuServe forum (GO DELPHI). It’s
also available on the Delphi Informant
Companion Disk and for download
from the Informant Web page
(http://www.informant.com) or the

Figure 4: MemMonD identifies the prob-
lem — two pointers that were never freed
— and the line of Object Pascal code that
created the pointers.
statement at an
appropriate
spot in the
application.

Keeping
Perspective
Obviously, this
sample pro-
gram is about
as trivial as you
can get. Any
programmer
worth his or
her salt would
have spotted
this one with
both eyes
Robert Vivrette is a contract programmer for Pacific Gas & Electric and Technical
Editor for Delphi Informant. He has worked as a game designer and computer
consultant, and has experience in a number of programming languages. He can
be reached on CompuServe at 76416,1373.

Informant Forum on CompuServe (GO
ICGFORUM). Delphi 3rd Party Library.
File name: MEMMND.ZIP.

Developer:
Per Larsen
CompuServe: 75470,1320
closed. However, MemMonD is just as capable with the
most complex program you can throw at it. I’ve had the
opportunity to test MemMonD with many applications
where I work and it has paid for itself many times over.

Many leaks (including this one) could allow an applica-
tion to run for hours or days with no apparent side
effects. It is simply a matter of how much memory is
leaking and from where. If it is a leak from one of the
limited GDI or USER heaps, you could see nasty
behavior quite early. However, if the leak is simply out
of the global memory pool, it could be weeks before the
program would misbehave.

In our example, the program is leaking 44 bytes every
time the button is clicked. My machine has 32
megabytes of memory, so it would likely take quite a
few mouse clicks to exhaust the system’s available mem-
ory. However, as mentioned above, programs are never
as simple as this example. If this leak were inside a loop
that created hundreds of bitmaps, it would constitute a
major resource leak.

Interestingly, MemMonD also points out some memory
leaks in the Delphi VCL. Granted these leaks are
minor, and Borland has commented that these leaks are
negligible and were purposely left in for performance
reasons. However, the registered version of MemMonD
comes with patches that you can insert into the VCL to
correct them if you wish.

But Wait, There’s More
What I have described here are only the basic capabili-
ties of MemMonD. It’s also capable of providing profil-
ing statistics on the most time-consuming routines, the
most stack-consuming, or the most frequently-called
routines. These are very handy features that allow you
to see where your program is spending most of its time.
Armed with this information, you can optimize those
sections of code. In addition, when you register
MemMonD, you get a user
license file that enables its
stack check hooking and block
overwrite options.

Currently, MemMonD only
works with the 16-bit version of
Delphi. However the author has
indicated that a Delphi 2 com-
patible version is in the works
and should be available by the
time you read this.

MemMonD was created by Per
Larsen (CompuServe
75470,1320) and costs US$49
for a single-user license,
US$147 for an unlimited site-
license. There is no written
documentation, but the
included Help files are suffi-
cient to learn how the package
works. There is a shareware
version of the package (with-

out some of the extended capabilities) that can be
found as MEMMND.ZIP in the “Debugger/Tools”
library section of Borland’s Delphi CompuServe forum
(GO DELPHI). Users can register the software via
SWREG (ID 9253) and will obtain, by e-mail, a file
that unlocks the extended capabilities of the package.

High Marks
MemMonD gets very high marks from me. It has
already saved me untold effort — and embarrassment —
tracking down memory leaks in some of the applications
I’ve been working on. (Hmmm. Should I admit that I
have written a leaky program?)

I honestly feel that no serious Delphi programmer
should be without MemMonD. I eagerly await the 32-
bit version — and have expressed this to the author on
numerous occasions. It already has a permanent place
in my suite of utilities, and when I die, they will have
to pry it from my fingers. ∆
Delphi Informant June 1996 42

TextFile
Developing Custom Delphi Components

If components are the heart

of Delphi, Ray Konopka
finds himself in the position
of a pioneering surgeon.

Until now, there has been a
paucity of substantive infor-
mation about developing
custom components. The
Borland documentation is
helpful, but woefully incom-
plete. And early third-party
books fail to discuss the issue
in any depth. Additionally,
while the source code for the
Visual Component Library
(VCL) is invaluable, it is no
substitute for a solid ground-
ing in the basics.

Ray Konopka solves this
problem — and many more
— in his Developing Custom
Delphi Components, published
by Coriolis Group Books.

While not flawless,
Components is the first book
to address the weighty subject
of Delphi component devel-
opment, and it tackles the
challenge with precision and
focus. It’s obvious — some-
times painfully so — that
some books include topics
solely so they can be included
in the table of contents. Not
so with Components. Even
sections devoted to relatively
minor subjects, such as excep-
tion handling and debugging,
have considerable meat to
them and stand up on their
own. Add to this Konopka’s
easy-to-read writing style and
the result is a book that any
serious Delphi developer
should add to his or her
library.

Components begins by dis-
cussing the basics developers
should know before building
components. Included in
this section is an excellent
overview of Delphi’s object
model. The author addresses
many key object-oriented
programming (OOP) issues
— such as virtual methods,
method pointers, class meth-
ods, virtual constructors,
and run-time type informa-
tion — that I haven’t seen
discussed in other third-
party Delphi books.

Unfortunately, Components
doesn’t cover them in as much
detail as one would ideally
like. Additionally, if you are
new to Object Pascal or OOP
terminology, you may want to
have a second reference
handy. Terms such as forward
class, virtual, and abstract are
probably not adequately
defined for the uninitiated.
The second part of the book

introduces the reader to
Delphi’s component architec-
ture. Konopka spends a chap-
ter dissecting a component
and follows with a look at the
Visual Component Library.
The actual process of building
a component is then detailed
in a cradle-to-grave manner,
starting with creating the unit
file with the Component
Expert, writing the code,
installing it onto the
Component Palette, and con-
cluding with a test of the
Design-Time Interface.

Part three — which for
many readers will represent
the core of the book — builds
on this initial discussion in
order to guide the reader
through the process of build-
ing components in all the
major categories: graphical,
dialog, non-visual, and data-
aware. It also covers related
issues such as building “wrap-
per” components and encap-
sulating multiple controls in a
component. The final part of
the book examines advanced
topics related to component
development, most notably a
chapter on property editors
and component editors.

Perhaps the most interesting
chapter in the book for me
was the one on building data-
aware business components.
This chapter is the first dis-
cussion I’ve seen on develop-
ing persistent business objects
in Delphi. Konopka shows a
technique that allows you to
attach a “business compo-
nent” to the normal data link
(i.e. TTable->TDataSource->
TDBEdit). This allows you to
work with business objects in
code, store their data persis-
tently in a database, and even
display object data using
built-in data-aware controls.

While Components is the
first book to address busi-
ness objects in Delphi, the
solution proposed is limited
to simple objects, and would
not stand up to a complex
object model without modi-
fication. Nonetheless, at a
minimum, this discussion
provides a jumping off point
for development of a more
intricate real-world solution.

Developing Custom Delphi
Components comes with a
CD-ROM filled with
source code for all compo-
nents discussed. Among the
many examples are: progress
and slider bars, an applica-
tion launcher, an e-mail
mailer, a data status control,
and an employee business
component.
It should be noted that the
book was written using
Delphi 1, but that all example
components compile without
problem under Delphi 2. An
appendix includes informa-
tion on moving to the 32-bit
version of Delphi.

In the past 15 months, the
Delphi developer community
has been forced to deal with a
lack of information on
advanced programming sub-
jects. Now Ray Konopka’s
Components serves as a pio-
neering book to address this
recognized need. However,
what ultimately makes
Developing Custom Delphi
Components a winner isn’t that
it’s the first to cover these
advanced issues, but that it
also covers them comprehen-
sively, with clarity and insight.

— Richard Wagner

Developing Custom Delphi
Components by Ray
Konopka, Coriolis Group
Books, 7339 East Acoma
Dr., Suite 7, Scottsdale, AZ
85260, (800) 410-0192,
http://www.coriolis.com.

ISBN: 1-883577-47-0
Price: US$39.99
585 pages, CD-ROM
Delphi Informant June 1996 43

File | New
Directions / Commentary

A Zero Sum Game?
If Mark Twain were alive today, and in our line of work, he would perhaps quip about Windows 95 and Windows NT by
saying “reports of their death have been greatly exaggerated.” At various times over the past few years, each has been tout-

ed as being both the operating system (OS) of the future and as a failure. Andrew Schulman wrote in Unauthorized
Windows 95 [IDG Books, 1994]: “Products such as NT…speak to too small a niche to be interesting” and followed with:
“Windows 95 will be the standard desktop OS for the next five years.” Recent columns now say the opposite, painting a
gloomy picture for Windows 95 as a “home” operating system. If you believe everything you read, you may be quite con-
fused. Forget the hyperbole. Neither OS is perfect for everyone, but each has convincing reasons for its use.
A Remarkable Similarity. We’re tempted
to choose an operating system like we
choose a spouse: you can only pick
one. Microsoft is altering this age-old
trend on the desktop by minimizing
the differences in the two platforms for
both users and developers. First, the
popular Windows 95 user interface is
now available in Windows NT 4.0
(Shell Update Release), giving users the
same “look and feel” across platforms.
Second, since applications — the
lifeblood of any operating system —
are designed for a specific environment,
ISVs have always had to select the plat-
form on which to put their develop-
ment efforts. Quite ingeniously,
Microsoft gently coerced vendors to
support both Win32 platforms by
requiring Win95 Logo applications to
work on both systems. Therefore,
although Windows 95 and Windows
NT have fundamentally different archi-
tectures, they can be remarkably similar
for both users and developers.

Making a choice. Even if both can
coexist in the marketplace and in your
company, which one is right for you
and for users of your software? Let’s
look at four environments most Delphi
developers have to be concerned with
— development, corporate, mobile,
and small office/home office (SOHO)
— and see how Windows 95 and
Windows NT rate in them.

Development. Probably the single
most important environment for you
personally is the one on which you
develop software. For those of us
developing 32-bit Windows applica-
tions, there is no contest; everything
significant to developers is in Windows
NT: stability, crash protection, pre-
emptive multitasking capabilities (even
with Win16 apps), and Windows 95
UI compliance. Developers will typi-
cally face the least number of hurdles
in terms of hardware constraints, since
many of you who use Delphi 2 already
have a Pentium with at least 24MB of
RAM. Grade: Windows NT (A+),
Windows 95 (B-).
Corporate. If perception is reality,

Windows 95 is doomed for the corpo-
rate desktop. While at one time it
seemed inevitable that Windows 95
would be the next standard for the cor-
porate desktop, today’s conventional
wisdom says that Windows NT 4.0 will
own this market in 12 months. Slower-
than-expected corporate sales, Windows
95 bashing in the trade press, and an
incoherent message from Redmond
have left many companies holding off
on Windows 95. Robustness, security,
and client/server stability are proving
key factors in convincing many medi-
um- to large-sized companies to opt for
Windows NT. Grade: Windows NT
(A), Windows 95 (B).

Mobile. Which OS should reign on
the notebook? Neither is perfect, so
your decision depends fundamentally
on where you stand on the “Ease of use
vs. Security” issue. Touting strong PC
card support, hot docking, and
advanced power management,
Windows 95 is perhaps the best OS
ever created for the mobile user.
However, many companies deploying
mobile work forces have a more impor-
tant concern: security. Letting sensitive
and proprietary information leave the
confines of a secure office environment
is a notion that gives most corporate
MIS managers nightmares. With
Windows 95, you have no way to fully
protect data on the notebook.
However, NT’s secure NTFS file sys-
tem prevents users from gaining access
to data unless they have logged into
NT itself. Grade: Windows NT (B-),
Windows 95 (B-).

SOHO. For most users in the SOHO
category, Windows 95 is the only one
of the two that makes sense. Critical
factors, such as performance and Plug
and Play, help get the job done quicker
with the least amount of effort. In this
“Just Do It” environment, you will
want Windows 95. Grade: Windows
NT (B-), Windows 95 (A).

Making a decision ... for now. In 1996,
choosing a desktop operating system
need not be an either/or proposition.
The right decision depends on the con-
text. For now, it seems clear that
Microsoft is comfortable providing a
two-tiered solution. But whether
Redmond’s dual OS approach is short-
or long-term remains unclear. I suspect
the answer depends largely on the mar-
ket’s ability to accept the notion that
two desktop platforms can — in fact —
coexist and complement each other. ∆

— Richard Wagner

Richard Wagner is the Chief Technology
Officer of Acadia Software in Boston,
MA. He welcomes your comments at
rwagner@acadians.com.
Delphi Informant June 1996 44

	Table of Contents
	Symposium
	Delphi Tools
	TurboPower Announces Async Professional 2.0 for Delphi
	New Delphi Components for Internet Programming
	Game Tools for Delphi 2
	Shoreline Releases New Version of VisualPROS for Delphi 2
	RoboHELP 95 HTML Edition Released by Blue Sky Software
	Wintertree Software Releases Updated Thesaurus Software

	NewsLine
	Delphi 2 Takes First Place in NSTL Comparative Ratings Report
	User-Based Pricing for Borland’s InterBase
	Borland Announces Java-Enabled InterBase InterClient
	Software Development ’96 West Update
	Borland Ships ReportSmith 3.0 for Windows 95 and Windows NT
	Borland’s C++ Wins SD ’96 Superbowl
	Borland Announces C++ 5.0 and ObjectScripting Contest
	Fung Joins PCSI

	Do the Strand
	Spindles and Spools
	When to Use Additional Threads
	Creating Threads Using the TThread Class
	Using the TThread Class
	Creating a Thread
	Placing the Code for the Background Work
	Using VCL Components from within a Thread
	Suspending and Resuming Threads
	Thread Priority
	Terminating a Thread
	A Multithreading Example: Using Child Forms and Worker Threads
	Conclusion
	Listing One — The WORKTHD.PAS file

	InterBase vs. Paradox
	Piqued Curiosity
	Paradox Is File Based
	InterBase Is Set Based
	Physical Design and Its Impact on Speed
	InterBase Isn’t for Browsing
	Locking
	Transaction Processing
	Triggers and Procedures
	Making the Choice
	Conclusion

	Strainless Filtering
	Filtering with Properties
	Using the OnFilterRecord Event Handler
	Navigating Using a Filter
	Conclusion

	Components & Sub-Components
	The TRzAddress Class
	Accessing Sub-Components through Properties
	Exposing Events that Occur in Sub-Components
	Conclusion
	Listing Two — The RzAddr Unit

	Talking to Yourself
	Recursion
	Factorials
	Plotting Trees
	Plotting a Fractal
	Binary Tree
	Grafting
	Pruning
	Easy Processing
	Conclusion

	DLLs: Part IV
	Dynamically Loading a DLL — LoadLibrary
	Calling LoadLibrary
	Releasing a DLL
	Using Dynamically Loaded DLLs
	Loading and Calling
	Accessing Data in a Library
	Conclusion

	Memory Monitor for Delphi
	Enter MemMonD
	An Example
	Keeping Perspective
	But Wait, There’s More
	High Marks

	TextFile
	Developing Custom Delphi Components

	A Zero Sum Game?

